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Introduction

In the most recent issue (August 2022) of Notice of AMS,
Chenyang Xu wrote a very nice survey article entitled K-stablility:
The recent interaction between algebraic and complex geometry.

Motivated by his article, I will describe part of contents he
mentioned, and explore the still somewhat mysterious connection
of its notion with Nevanlinna theory (Diophantine
approximation). This talk is based on the recent paper of Yan He
and Min Ru: The stability threshold and Diophantine
approximation, Proc. A.M.S., 2022.
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Canonical metrics and stability

A metric form ω on a complex manifold X is said to be Kähler if ω
is a closed 2-form.

Its class [ω] ∈ H2(X ,R) is a topological
invariant. For a Kähler form ω, one can attach the Ricci form
Ric(ω). It is also a closed 2-form and a remarkable fact is that its
class [Ric(ω)] is the first Chern class c1(X ). Around the 50s, two
fundamental questions became central in complex geometry. The
first one is
Calabi Conjecture. Given a compact Kähler manifold (X , ω)
together with a 2-form R representing c1(X ), one can always find
a Kähler form ω̂ such that [ω] = [ω̂] and Ric (ω̂) = R. The
conjecture was proved in Yau’s famous work in the late 70’s. The
second question is
K-E question. Does there always exists a Kähler from ωKE on X
such that Ric (ωKE ) = λωKE? Note, in the class level,
c1(X ) = λ[ω] for λ = 0, 1,−1.
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The case λ = 0, it is true by the solution of Calabi conjecture,
when λ = −1, it was proved by Aubin and Yau.

The case when
λ = 1, X is called Fano. In this case, problem becomes more
subtle and there is no definite answer. In late 90’s, Tian
introduced the notion of K-stability. This was later reformulated in
a purely algebro-geometric form by Donaldson. When the base
field is the complex number field, it was recently established (by
Xiuxiong Chen, Simon Donaldson, and Song Sun, 2012) that the
existence of positive scalar curvature Kähler-Einstein metric is
actually equivalent to the K-stability condition.
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Valuative criterion of K-stability.

The notion of the K-stability of Fano varieties is an
algebro-geometric stability condition.

An important problem in
algebraic geometry is to find a simple criterion to test the
K -stability of the variety X . One fundamental development is the
equivalent description of the notions of K -stability, using the
valuation over the function filed K (X ) (ordE f , where E is a
irreducible divisor on X )
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The β-constant (in Ru-Vojta’s paper, Amer. J. Math. 2020):

Let L
be a holomorphic line bundle and D be an effective divisor on X .
Let H0(X ,mL) be the set of holomorphic sections of L⊗m. Write
h0(L) = dimH0(X , L). Define

β(L,D) := lim supm→∞

∑
t≥1 h

0(mL−tD)

mh0(mL)
. Regarding

H0(X ,mL− tD) ⊂ H0(X ,mL) by s 7→ s⊗t
D s, we get a filtration:

H0(X ,mL) ⊇ H0(X ,mL− D) ⊇ H0(X ,mL− tD) · · · ⊇ . Assume
D is irreducible, then β(L,D) = limm→∞

1
Nm

∑Nm
i=1 ordD(si ), where

{s1, . . . , sNm} is a basis of H0(X ,mL) according to this filtration.
Indeed, if we let Sm(D) := sup{s1,...,sNm}

1
Nm

∑Nm
i=1 ordD(si ), where

sup runs all basis, then the sup is achieved by a basis of
filtration. so β(L,D) = limm→∞ Sm(D). We also have
β(L,D) = 1

Vol(L)

∫∞
0 Vol(L− tD)dt, where

Vol(L) = lim supm→∞
dimH0(X ,mL)

mn/n! (Note: Vol(kL) = knVol(L) so
the volume function can be extended to Q-divisors. Also note
that Vol( ) depends only on the numerical class of L, so it is
defined on NS(X ) := Div(X )/Num(X ) and extends uniquely to a
continuous function on NS(X )R).
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β(L,D) := lim supm→∞

∑
t≥1 h

0(mL−tD)

mh0(mL)
.

Regarding

H0(X ,mL− tD) ⊂ H0(X ,mL) by s 7→ s⊗t
D s, we get a filtration:

H0(X ,mL) ⊇ H0(X ,mL− D) ⊇ H0(X ,mL− tD) · · · ⊇ . Assume
D is irreducible, then β(L,D) = limm→∞

1
Nm

∑Nm
i=1 ordD(si ), where

{s1, . . . , sNm} is a basis of H0(X ,mL) according to this filtration.
Indeed, if we let Sm(D) := sup{s1,...,sNm}

1
Nm

∑Nm
i=1 ordD(si ), where

sup runs all basis, then the sup is achieved by a basis of
filtration. so β(L,D) = limm→∞ Sm(D). We also have
β(L,D) = 1

Vol(L)

∫∞
0 Vol(L− tD)dt, where

Vol(L) = lim supm→∞
dimH0(X ,mL)

mn/n! (Note: Vol(kL) = knVol(L) so
the volume function can be extended to Q-divisors. Also note
that Vol( ) depends only on the numerical class of L, so it is
defined on NS(X ) := Div(X )/Num(X ) and extends uniquely to a
continuous function on NS(X )R).
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Valuative criterion:

In 2015, Fujita showed that if (Fano) X is
K -(semi) stable, then β(−KX ,D) < 1 (resp. β(−KX ,D) ≤ 1) for
any nonzero effective divisor D on X . Fujita and C. Li (with a
technical assumption, which were removed by Blum-Xu)
independently proved that it is indeed an equivalence condition if
one goes to the birational model, i.e. the Q-fano variety X is K -
stable if and only if AX (E)

β(−KX ,E) > 1 for any prime divisors E over X

(i.e. E is a prime divisor on a birational model π : X̃ → X ), where
AX (E ) := 1 + ordE (KY /X ) and is called the log discrepancy. X is
said to have klt singularities if AX (E ) > 0 for all prime divisors

over X . We call δ(L) = infE
AX (E)
β(L,E) the stability threshold.

Valuative criterion of K -stability. 1. X is uniformly K -stable (resp.
semi-satble) if and only if δ(−KX ) > 1 (resp. ≥ 1) (Fuji-Li).
2. X is K -stable if and only if AX (E ) > β(−KX ,E ) for any E
(Blum-Xu).
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K -stability through the base type divisor

Blum-Jonsson (Blum-Jonsson, Advances in Math., 2020) used
m-basis type to describe the stability threshold
δ(L) = infE

AX (E)
β(L,E) .

For m sufficient large, we say D is a m-basis

type divisor if D = 1
mNm

((s1) + · · ·+ (sNm)) where {s1, . . . , sNm}
forms a basis of H0(X ,mL). Recall the algebraic geometry

definition of “log canonical threshold”: lct(D) = minE
AX (E)
ordE (D) .

Let δm(L) := infD lct(D) = infD minE
AX (E)
ordE (D) = infE

AX (E)
Sm(E) , where

D ∼Q L runs through over all m-basis type divisors. Since
limm→∞ Sm(E ) = β(L,E ) (as we described earlier), Blum-Jonsson
proved that limm→ δm(L) = δ(L). We note that this gives us a way
to verify K -stability for explicit Fano varieties, by estimating
δm(−KX ).
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The log canonical threshold through singular metric

Tian in 1987 introduced α(L) the log canonical threshold of L as
follows:

Let h = e−ϕ be a singular metric with ΘL,h ≥ 0, where

ΘL,h =
√
−1
π ∂∂̄ log ϕ. Define cp(h) = sup{c | e−2cϕ is locally

integrable at p}. Define, for p ∈ X , αp(L) = infh:ΘL,h≥0 cp(h)
and α(L) = infp∈X αp(L). Tian proved that if α(−KX ) >

n
n+1 ,

then X is K -stable. Let D be an effective Cartier divisor, then
the canonical section sD of [D] gives a singular metric on [D] with
ϕ := log |sD |. We denote lctp(D) := cp(h) and
lct(D) := infp∈X lctp(D) with such metric. Use the fact that, for
ϕ = log |f |, e−2cϕ = 1

|f |2c , and the fact that
∫

1
|z|a2λ < ∞ iff

λa− 1 < 0, i.e. λ < 1
a , this links with the (algebraic geometry)

definition for lct(D). According to Demailly,

α(L) = inf{lct(D) | D is effective,D ∼Q L}.

This allows purely algebro-geometric proofs of Käher-Einstein
metrics.
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metrics.

Min Ru K-stability and Nevanlinna-Diophantine theory



The log canonical threshold through singular metric

Tian in 1987 introduced α(L) the log canonical threshold of L as
follows: Let h = e−ϕ be a singular metric with ΘL,h ≥ 0, where

ΘL,h =
√
−1
π ∂∂̄ log ϕ. Define cp(h) = sup{c | e−2cϕ is locally

integrable at p}. Define, for p ∈ X , αp(L) = infh:ΘL,h≥0 cp(h)
and α(L) = infp∈X αp(L). Tian proved that if α(−KX ) >

n
n+1 ,

then X is K -stable. Let D be an effective Cartier divisor, then
the canonical section sD of [D] gives a singular metric on [D] with
ϕ := log |sD |. We denote lctp(D) := cp(h) and
lct(D) := infp∈X lctp(D) with such metric. Use the fact that, for
ϕ = log |f |, e−2cϕ = 1

|f |2c , and the fact that
∫

1
|z|a2λ < ∞ iff

λa− 1 < 0, i.e. λ < 1
a , this links with the (algebraic geometry)

definition for lct(D). According to Demailly,

α(L) = inf{lct(D) | D is effective,D ∼Q L}.

This allows purely algebro-geometric proofs of Käher-Einstein
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Nevanlinna theory

The Second Main Theorem(Nevanlinna, 1929). Let f be
meromorphic (non-constant) on C and a1, ..., aq ∈ C ∪ {∞}
distinct. Then, for any ϵ > 0,
(q − 2− ϵ)Tf (r) ≤exc

∑q
j=1Nf (r , aj), or equivalently

q∑
j=1

mf (r , aj) ≤exc (2 + ϵ)Tf (r) ,

where ≤exc means that the inequality holds for r ∈ [0,+∞)
outside a set E with finite measure. This implies the well-known
little Picard theorem: If a meromorphic function f on C omits
three points in C ∪ {∞}, then f must be constant.
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Cartan’s Theorem (1933).

Let f : C → Pn(C) be a linearly
non-degenerate holomorphic map. Let H1, . . . ,Hq be the
hyperplanes in general position on Pn(C). Then, for any ϵ > 0,∑q

j=1mf (r ,Hj) ≤exc (n + 1 + ϵ)Tf (r).
In 2004, Ru extended the above result to hypersurfaces for
f : C → Pn(C) with Zariski dense image.∑q

j=1
1
dj
mf (r ,Dj) ≤exc (n + 1 + ϵ)Tf (r).

Theorem (Ru, 2009). Let f : C → X be holo and Zariski dense,
D1, . . . ,Dq be divisors in general position in X . Assume that
Dj ∼ djA (A being ample). Then, for ∀ ϵ > 0,
q∑

j=1

1

dj
mf (r ,Dj) ≤exc (dimX + 1 + ϵ)Tf ,A(r).
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Notations: λD(x) = − log ∥sD(x)∥ =− log distance from x to D

(Weil function for D),

mf (r ,D) =
∫ 2π
0 λD(f (re

iθ))dθ2π (Proximity

function). Tf ,L(r) :=
∫ r
1

dt
t

∫
|z|<t f

∗c1(L) (Height function).

Note: If D1 ≥ D2 (i.e. ordE D1 ≥ ordE D2 for all irreducible E ),
then λD1 ≥ λD2 .
Theorem (Ru-Vojta, Amer. J. Math., 2020). Let X be a smooth
complex projective variety and let D1, . . . ,Dq be effective Cartier
divisors in general position. Let L be a line sheaf on X with
h0(L N) ≥ 1 for N big enough. Let f : C → X be a holomorphic
map with Zariski image. Then, for every ϵ > 0,

q∑
j=1

βj(L ,Dj)mf (r ,Dj) ≤exc (1 + ϵ)Tf ,L (r)

where

β(L ,D) = lim sup
N→+∞

∑
m≥1 dimH0(X ,L N(−mD))

N dimH0(X ,L N)
.

In the case when Dj ∼ A, then β(D,Dj) =
q

n+1 , where
D = D1 + · · ·+ Dq.
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In the case when Dj ∼ A, then β(D,Dj) =
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D = D1 + · · ·+ Dq.
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Notations: λD(x) = − log ∥sD(x)∥ =− log distance from x to D

(Weil function for D), mf (r ,D) =
∫ 2π
0 λD(f (re

iθ))dθ2π (Proximity

function). Tf ,L(r) :=
∫ r
1

dt
t

∫
|z|<t f

∗c1(L) (Height function).

Note: If D1 ≥ D2 (i.e. ordE D1 ≥ ordE D2 for all irreducible E ),
then λD1 ≥ λD2 .
Theorem (Ru-Vojta, Amer. J. Math., 2020). Let X be a smooth
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Diophantine approximation

Theorem (Ru-Vojta, 2020) [Arithmetic Part] Let X be a projective
variety over a number field k, and D1, . . . ,Dq be effective Cartier
divisors intersecting properly on X . Let L be a line bundle on X
with h0(LN) ≥ 1 for N big enough. Let S ⊂ Mk be a finite set of
places. Then, for every ϵ > 0, the inequality

q∑
i=1

β(L,Dj)mS(x ,Dj) ≤ (1 + ϵ)hL(x)

holds for all k-rational points outside a proper Zariski-closed
subset of X .
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The proof is based on the following basic theorem, which is
basically a reformulation of Cartan’s theorem above:

The Basic Theorem (m-base estimate). Let X be a complex
projective variety and let L be a line sheaf on X with
dimH0(X ,L) ≥ 1. Let s1, . . . , sq ∈ H0(X ,L). Let f : C → X
be a holomorphic map with Zariski-dense image. Then, for any
ϵ > 0,∫ 2π

0
max
J

∑
j∈J

λsj (f (re
iθ))

dθ

2π
≤exc (dimH0(X ,L) + ϵ)Tf ,L(r)

where the set J ranges over all subsets of {1, . . . , q} such that the
sections (sj)j∈J are linearly independent. Note: The D ∼Q L is of
m-basis type if D := 1

mNm

∑
s∈B(s), where B is a basis of

H0(X ,L⊗m), where Nm = dimH0(X ,L⊗m).
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Theorem (Weak version of Ru-Vojta). Let X be a complex
projective variety and let D1, . . . ,Dq be effective Cartier divisors
such that at most ℓ of such divisors meet at any point of X .

Let
L be a line sheaf on X with h0(LN) ≥ 1 for N big enough. Let
f : C → X be a holomorphic map with Zariski-dense image.
Then, for every ϵ > 0,∑q

j=1 β(L,Dj)mf (r ,Dj) ≤exc ℓ (1 + ϵ)Tf ,L(r).
The proof is using the Basic Theorem (m-base estimate) by
choosing a a suitable m-basis of H0(X ,mL) through the filtration
filtration Ft

m = H0(X ,mL− tE ), t ≥ 0 of H0(X ,mL)
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Outline of the proof:

For each f (z) = x ∈ X , from the condition
that at most ℓ of Dj , 1 ≤ j ≤ q, meet at x , we have∑q

j=1 βjλDj
(x) ≤ ℓβi0λDi0

(x) + O(1).

Consider the Ft
m = H0(X ,mL− tD0), t ≥ 0, of H0(X ,mL) and

choose a basis s1, · · · , sNm ∈ H0(X ,mL) according to this
filtration. Notice that for s ∈ H0(X ,mL− tDi0)), we have
(s) ≥ tDi0 , so

1

mNm

Nm∑
j=1

(sj) ≥
∑∞

t=1 h
0(mL− tDi0)

mNm
Di0 .

It then follows from the Basic Theorem.
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With the filtration (multi-parameter filtration) in Ru-Vojta, we can
prove that
Theorem (He-Ru, Proc. A.M.S., 2022).

δ(L) ≤ 1

max1≤i≤q β(Di , L)
lct(D),

for any divisor D = D1 + · · ·+ Dq with D1, . . . ,Dq are in general
position on X .

Ru-Vojta theorem is just above result plus the
Basic Theorem.
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Three interesting constants

Let L be ample, we define

Seshadri constant ϵ(L,D):

ϵ(L,D) = sup{γ ∈ Q : L− γD is nef}.

T (L,D) = sup{γ ∈ Q : L−γD is effective or pseudo-effective}.

Then we have (Blum-Jonsson) ϵ(L,D) ≤ T (L,D) and
1

n+1T (L,D) ≤ β(L,D) ≤ T (L,D).

Furthermore, α(L) = infE
A(E)

T (L,E) (while δ(L) = infE
A(E)
β(L,E)),

and
α(L) ≤ δ(L) ≤ (n + 1)α(L).
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