

Concavity property of minimal L^2 integrals

Zhitong Mi

Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences

August 26, 2022

Zhitong Mi (CAS)

Concavity property of minimal L^2 integrals

Let X be a complex manifold. Let φ be a plurisubharmonic function (psh for short) on X.

Recall that the *multiplier ideal sheaf* $\mathcal{I}(\varphi)$ is defined to be the sheaf of germs of holomorphic functions $(f, x) \in \mathcal{O}_{X,x}$ such that $|f|^2 e^{-\varphi}$ is locally integrable near x.

It is known that $\mathcal{I}(\varphi)$ is a coherent analytic sheaf (Nadel). Denote

$$\mathcal{I}_+(arphi) := \cup_{\epsilon > 0} \mathcal{I}((1+\epsilon)arphi).$$

Demailly posed the so-called strong openness conjecture (SOC for short) on multiplier ideal sheaves, i.e.,

$$\mathcal{I}(\varphi) = \mathcal{I}_+(\varphi).$$

The SOC is equivalent to the following theorem which was proved by Guan-Zhou.

Theorem 1.1 (Guan-Zhou, Annals of math, 2015)

Let $\varphi < 0$ be a plurisubharmonic function on $\Delta^n \subset \mathbb{C}^n$. Suppose F is a holomorphic function on Δ^n , which satisfies

$$\int_{\Delta^n} |F|^2 e^{-\varphi} d\lambda_n < +\infty,$$

where $d\lambda_n$ is the Lebesgue measure on \mathbb{C}^n . Then for some $r \in (0, 1)$, there exists a number p > 1 such that

$$\int_{\Delta_r^n} |F|^2 e^{-p\varphi} d\lambda_n < +\infty.$$

When $\mathcal{I}(\varphi) = \mathcal{O}$, the SOC degenerates to the openness conjecture (OC for short) which was posed by Demailly and Kollár.

- 2-dim case of the OC was proved by C. Favre and M. Jonsson by using algebraic method.
- 2-dim case of the SOC was proved by M. Jonsson and M. Mustață by using algebraic method.
- The OC was proved by B. Berndtsson by using complex Brunn-Minkowski inequalities.
- The SOC was proved by Guan-Zhou by using L^2 extension theorem movably and induction.
- Recently, Chenyang Xu completed the algebraic approach to the OC.

Recall that Berndtsson proved the openness conjecture by establishing an effectiveness result of the openness conjecture:

Theorem 1.2 (Berndtsson, arXiv:1305.5781)

Let φ be a negative plurisubharmonic function on the unit ball \mathbb{B}^n . Let $z_0 \in \mathbb{B}^n$ such that $|z_0| \leq \frac{1}{2}$. Assume that $\int_{\mathbb{R}^n} e^{-\varphi} < +\infty$. If p satisfies

$$rac{1}{400(p-1)}\geq rac{\int_{\mathbb{B}^n}e^{-arphi}d\lambda_n}{\displaystyle\inf_{z\in \mathbb{B}^n_{rac{1}{2}}}rac{1}{K(z)}},$$

where K(z) is the Bergman kernel on \mathbb{B}^n , then $e^{-p\varphi}$ is integrable near z_0 .

Guan-Zhou's effectiveness result of the SOC

Continuing the solution of the SOC, Guan-Zhou established an effectiveness result of the SOC.

Let F be a holomorphic function on a pseudoconvex domain $D \subset \mathbb{C}^n$, and $\varphi < 0$ be a psh function on D. Let $z_0 \in D$ be a point. Denote that

$$\|F\|_{\varphi} := \left(\int_{D} |F|^2 e^{-\varphi} d\lambda_n\right)^{\frac{1}{2}}$$

and

$$K_{\varphi,F}(z_0) := \frac{1}{\inf\{\|F_1\|_0^2 : (F_1 - F, z_0) \in \mathcal{I}_+(2c_{z_0}^F(\varphi)\varphi)_{z_0} \& F_1 \in \mathcal{O}(D)\}},$$

where $c_{z_0}^F(\varphi) := \sup\{c \ge 0 : |F|^2 e^{-2c\varphi} \text{ is } L^1 \text{ on a neighborhood of } z_0\}$ is the jumping number.

Theorem 1.3 (Guan-Zhou, Invent. Math., 2015)

Let C_1 and C_2 be two positive constants. We consider the set of pairs (F, φ) satisfying: (1) $||F||_{\varphi}^2 \leq C_1$; (2) $\frac{1}{K_{\varphi,F}(z_0)} \geq C_2$. Then for any p > 1 satisfying

$$\left(\frac{1}{(p-1)(2p-1)}\right)^{\frac{1}{p}} > \frac{C_1}{C_2},$$

we have

$$(F, z_0) \in \mathcal{I}(p\varphi)_{z_0}.$$

Let $D \subset \mathbb{C}^n$ be a pseudoconvex domain and $z_0 \in D$ be a point. Let $I \subset \mathcal{O}_{z_0}$ be an ideal. Let F be a holomorphic function on D.

Denote that

$$C_{F,I}(D):=\inf\left\{\int_D|F_1|^2d\lambda_n:(F_1-F,z_0)\in I\& F_1\in\mathcal{O}(D)\right\}.$$

Note that
$$C_{F,\mathcal{I}_+(2c^F_{z_0}(\varphi)\varphi)_{z_0}}(D) = \frac{1}{K_{\varphi,F}(z_0)}.$$

Guan established a sharp effectiveness result of the SOC by considering the minimal L^2 integrals $C_{F,l}(\{\varphi < -t\})$ on all sublevel sets of the weight φ .

Theorem 1.4 (Guan, Adv. in Math., 2019)

Let C_1 and C_2 be two positive constants. We consider the set of pairs (F, φ) satisfying: (1) $||F||_{\varphi}^2 \leq C_1$; (2) $\frac{1}{K_{\varphi,F}(z_0)} \geq C_2$. Then for any p > 1 satisfying $\theta(p) > \frac{C_1}{C_2}$,

we have $(F, z_0) \in \mathcal{I}(p\varphi)_{z_0}$, where $\theta(p) = \frac{p}{p-1}$, which is sharp.

Denote

$$G(t) := C_{F,\mathcal{I}(\varphi)_{z_0}}(\{\varphi < -t\}).$$

Guan established a concavity property of minimal L^2 integrals on pseudoconvex domains in \mathbb{C}^n .

Theorem 1.5 (Guan, Adv. in Math., 2019)

If $G(0) < +\infty$, then $G(-\log r)$ is concave with respect to $r \in (0, 1]$.

- Let M be a weakly pseudoconvex Kähler manifold. Let K_M be the canonical line bundle on M.
- Let ψ be a plurisubharmonic function on M, and let φ be a Lebesgue measurable function on M, such that ψ + φ is a plurisubharmonic function on M. Denote T = sup ψ.
- Let Z_0 be a subset of $\{\psi = -\infty\}$ such that $Z_0 \cap Supp(\mathcal{O}/\mathcal{I}(\varphi + \psi)) \neq \emptyset$.
- Let $U \supset Z_0$ be an open subset of M, and let f be a holomorphic (n, 0) form on U.
- Let $\mathcal{F} \supset \mathcal{I}(\varphi + \psi)|_U$ be a coherent subsheaf of \mathcal{O} on U.

Definition

Define the function $G(t; c, \varphi, \psi, f, \mathcal{F}) : [T, +\infty) \rightarrow [0, +\infty]$ as follows,

$$\inf\left\{\int_{\{\psi<-t\}}|\tilde{f}|^2e^{-\varphi}c(-\psi):(\tilde{f}-f)\in H^0(Z_0,(\mathcal{O}(K_M)\otimes\mathcal{F})|_{Z_0})\\&\&\tilde{f}\in H^0(\{\psi<-t\},\mathcal{O}(K_M))\right\},$$

where c is a nonnegative measurable function on $(T, +\infty)$, $|f|^2 := \sqrt{-1}^{n^2} f \wedge \overline{f}$ for any (n, 0) form f and $(\widetilde{f} - f) \in H^0(Z_0, (\mathcal{O}(K_M) \otimes \mathcal{F})|_{Z_0})$ means $(\widetilde{f} - f, z_0) \in (\mathcal{O}(K_M) \otimes \mathcal{F})_{z_0}$ for all $z_0 \in Z_0$. We consider the following example.

Let $M = \Omega$ be an open Riemann surface with nontrivial Green function $G_{\Omega}(z, w)$. Let $Z_0 = z_0$ be a point in Ω . Let (U, z) be a local coordinate system of z_0 . Let f = dz on U. Set $\psi = 2G_{\Omega}(z, z_0)$ and $\varphi = 0$. Set $\mathcal{F} = \mathcal{I}(\psi)|_U$. Let $c(t) \equiv 1$. At this time, we have

$$G(t; c, \varphi, \psi, f, \mathcal{F}) = rac{2}{\mathcal{K}_{\Omega_t}(z_0)}$$

where $K_{\Omega_t}(z_0)$ is the Bergman kernel on $\Omega_t := \{2G_{\Omega}(z, z_0) < -t\}$.

13/39

General minimal L^2 integrals

We introduce the following notation.

Definition

Let c(t) be a nonnegative measurable function on $(T, +\infty)$.

$$\begin{aligned} \mathcal{H}^2(t;c,\varphi,\psi,f,\mathcal{F}) &:= \{\tilde{f}: \ \tilde{f} \in H^0(\{\psi < -t\},\mathcal{O}(K_M)), \\ (\tilde{f}-f) \in H^0(Z_0,(\mathcal{O}(K_M)\otimes\mathcal{F})|_{Z_0}), \\ & \& \int_{\{\psi < -t\}} |\tilde{f}|^2 e^{-\varphi} c(-\psi) < +\infty. \} \end{aligned}$$

where $t \geq T$ is a real number.

We simply denote $G(t; c, \varphi, \psi, f, \mathcal{F})$ by G(t) and $\mathcal{H}^2(t; c, \varphi, \psi, f, \mathcal{F})$ by $\mathcal{H}^2(t)$ when there is no misunderstanding. If $\mathcal{H}^2(t) = \emptyset$, we set $G(t) = +\infty$. We introduce a class of twisted factors c(t) (so-called "gain" functions) as follows.

Definition

We call a positive measurable function c(t) on $(T, +\infty)$ in class \mathcal{G}_T if the following three statements hold:

(1)
$$\int_T^{+\infty} c(t) e^{-t} dt < +\infty;$$

(2) $c(t)e^{-t}$ is decreasing with respect to t;

(3) for any compact subset $K \subset M$, $e^{-\varphi}c(-\psi)$ has a positive lower bound on K.

We obtain the following concavity of G(t) on M.

Theorem 2.1 (Guan-Mi, Sci China Math, 2022)

Let $c \in \mathcal{G}_T$ and smooth on $(T, +\infty)$. If there exists $t \in [T, +\infty)$ satisfying that $G(t) < +\infty$, then $G(h^{-1}(r))$ is concave with respect to $r \in (0, \int_T^{+\infty} c(t)e^{-t}dt]$, where $h(t) = \int_t^{+\infty} c(t_1)e^{-t_1}dt_1$, $t \in [T, +\infty)$.

• We generalize Theorem 2.1 to the case c(t) is only assumed to be Lebesgue measurable function in [Guan-Mi-Yuan, Concavity II, Researchgate].

Example

Let $M = \Delta \subset \mathbb{C}$ be the unit disc and $Z_0 = 0$ be the origin. Let $\psi = 4 \log |z|$, $\varphi = 0$ and $c(t) \equiv 1$. Let f = dz on Δ_{ϵ} , for some $\epsilon > 0$ small. Let $\mathcal{F}_0 = \mathcal{I}(\psi)_0 = (z^2)_0$. Then we have

$$G(t) = \inf \{ \int_{\{4 \log |z| < -t\}} |\tilde{f}|^2 : \tilde{f} \in H^0(\{\psi < -t\}, \mathcal{O}(K_M)) \& (\tilde{f} - f)_0 \in (z^2)_0 \}.$$

By using the polar coordinate change, we know that the infimum is obtained by $\tilde{f} = dz$. Direct calculation shows that

$$G(t)=2\pi e^{-\frac{t}{2}}.$$

At this time, $r = h(t) = \int_t^{+\infty} e^{-t_1} dt_1 = e^{-t}$ and $t = h^{-1}(r) = -\log r$. Hence $G(h^{-1}(r)) = 2\pi r^{\frac{1}{2}}$ which is concave with respect to r. We introduce some properties of minimal L^2 integral function G(t).

The following lemma is a characterization of G(t) = 0, where $t \ge T$.

Lemma 2.2 (Guan-Mi, Sci China Math, 2022)

The following two statements are equivalent: (1) $f \in H^0(Z_0, (\mathcal{O}(K_M) \otimes \mathcal{F})|_{Z_0}).$ (2) G(t) = 0. The following lemma shows that there exists a unique holomorphic (n, 0) form related to G(t).

Lemma 2.3 (Guan-Mi, Sci China Math, 2022)

Assume that $G(t) < +\infty$ for some $t \in [T, +\infty)$. There exists a unique holomorphic (n, 0) form F_t on $\{\psi < -t\}$ satisfying

$$\int_{\{\psi<-t\}} |F_t|^2 e^{-\varphi} c(-\psi) = G(t)$$

and $(F_t - f) \in H^0(Z_0, (\mathcal{O}(K_M) \otimes \mathcal{F})|_{Z_0})$. Furthermore, for any holomorphic (n, 0) form \hat{F} on $\{\psi < -t\}$ satisfying $\hat{F} \in \mathcal{H}^2(t)$, we have the following equality

$$\int_{\{\psi < -t\}} |F_t|^2 e^{-\varphi} c(-\psi) + \int_{\{\psi < -t\}} |\hat{F} - F_t|^2 e^{-\varphi} c(-\psi)$$

=
$$\int_{\{\psi < -t\}} |\hat{F}|^2 e^{-\varphi} c(-\psi).$$

Zhitong Mi (CAS)

August 26, 2022

19/39

The following lemma shows the lower semicontinuity of G(t).

Lemma 2.4 (Guan-Mi, Sci China Math, 2022)

G(t) is decreasing with respect to $t \in [T, +\infty)$, such that $\lim_{t \to t_0+0} G(t) = G(t_0)$ for any $t_0 \in [T, +\infty)$, and if $G(t) < +\infty$ for some t > T, then $\lim_{t \to +\infty} G(t) = 0$. Especially, G(t) is lower semicontinuous on $[T, +\infty)$.

By using Lemma 2.3, Lemma 2.4 and then calculating the derivatives of G(t), we can prove the Main Theorem.

Let *M* be an n-dimensional weakly pseudoconvex Kähler manifold. Let dV_M be a continuous volume form on *M* with no zero points. Let *Y* be a closed complex submanifold of X with codimension *I*. Let $\psi < 0$ be a plurisubharmonic function on *X* which satisfies

(1) $Y \subset \{\psi = -\infty\}$, where $\{\psi = -\infty\}$ is a closed subset of X. (2) For any $x \in Y$, there exists a local coordinate $(V; z_1, \dots, z_n)$ of x such that $Y \cap V = \{z_{n-l+1} = \dots = z_n = 0\}$, and $\psi(z) = l \log \sum_{n=l+1}^{n} |z_j|^2 + u(z)$ on V, where $u \in C^{\infty}(V)$.

The set of such polar functions ψ will be denoted by A(Y).

Following Ohsawa (Nagoya Math. J., 2001.), given a function $\psi \in A(Y)$ on M, one can associate a positive measure $dV_M[\psi]$ on Y as the minimum element of the partially ordered set of positive measures $d\mu$ satisfying

$$\int_{\mathbf{Y}} f d\mu \geq \limsup_{t \to +\infty} \frac{l}{\sigma_{2l-1}} \int_{M} f e^{-\psi} \mathbb{I}_{\{-t-1 < \psi < -t\}} dV_{M}$$

for any nonnegative continuous function f with $supp \in C \subset M$, where $\mathbb{I}_{\{-t-1 < \psi < -t\}}$ is the characteristic function of the set $\{-1 - t < \psi < -t\}$. Here σ_m is the volume of the unit sphere in \mathbb{R}^{m+1} .

Let $\psi \in A(Y)$ be a plurisubharmonic function on M. Let $\Omega \subset M$ be an open subset of M. We assume that $\psi < -T$ on Ω . Let φ be a smooth plurisubharmonic functions on $\overline{\Omega}$.

Let U be an open neighborhood of $Y \cap \Omega$ in Ω and $f \in H^0(U, \mathcal{O}(K_M))$, which satisfies

$$\int_{Y\cap\Omega} |f|^2 e^{-arphi} dV_M[\psi] < +\infty.$$

Let $c(t) \in \mathcal{G}_{\mathcal{T}}$ be smooth, then one can define the function $\mathcal{G}_{\Omega}(t;c)$ on Ω by

$$\inf\{\int_{\{\psi<-t\}\cap\Omega} |\tilde{f}|^2 e^{-\varphi} c(-\psi) dV_M : \tilde{f} \in H^0(\{\psi<-t\}\cap\Omega, \mathcal{O}(K_M)) \\ \&(\tilde{f}-f) \in H^0(Y\cap\Omega, \mathcal{O}(K_M)\otimes\mathcal{I}(\varphi+\psi)|_{Y\cap\Omega})\}$$

Proposition 3.1 (Guan-Mi, Sci China Math, 2022)

Let $M, Y, \Omega, \psi, \varphi, f$ be as above. Then for any smooth positive function c(t) in \mathcal{G}_T , the following equality holds

$$\lim_{t\to+\infty}\frac{G_{\Omega}(t;c)}{\int_t^{+\infty}c(t_1)e^{-t_1}dt_1}=\frac{\pi^l}{l!}\int_{Y\cap\Omega}|f|^2e^{-\varphi}dV_M[\psi].$$

Zhitong Mi (CAS)

Remark 3.1 (Guan-Mi, Sci China Math, 2022)

Combining with the Theorem 2.1 and Proposition 3.1, we know

$$\frac{G_{\Omega}(T;c)}{\int_{T}^{+\infty} c(t_1)e^{-t_1}dt_1} \leq \frac{\pi^{l}}{l!} \int_{Y \cap \Omega} |f|^2 e^{-\varphi} dV_M[\psi]. \tag{1}$$

It follows from Lemma 2.3 that there exists a holomorphic (n,0) form F_{Ω} on Ω such that $G_{\Omega}(T;c) = \int_{\Omega} |F_{\Omega}|^2 e^{-\varphi} c(-\psi) dV_M$, then (1) shows that F_{Ω} is a holomorphic extension of f from Y to Ω which satisfies the optimal L^2 estimate.

Let Ω be an open Riemann surface which admits a nontrivial Green function $G_{\Omega}(z, w)$.

Let (V_{z_0}, w) be a local coordinate neighborhood of z_0 satisfying $w(z_0) = o$ and $G_{\Omega}(z, z_0) = \log |w| + u(w)$ on V_{z_0} , where u(w) is a harmonic function on V_{z_0} .

Let $c_{\beta}(z)$ be the logarithmic capacity which is locally defined by

$$c_{\beta}(z_0) := \exp(\lim_{z \to z_0} G_{\Omega}(z, z_0) - \log|w(z)|).$$

Let κ_{Ω} be the Bergman kernel of holomorphic (1,0) form on Ω . We define

$$B_{\Omega}(z)|dw|^2 := \kappa_{\Omega}|_{V_{z_0}}.$$

26 / 39

Suita posed the following conjecture.

Suita conjecture (Arch. Rational Mech. Anal., 1972)

 $(c_{\beta}(z_0))^2 \leq \pi B_{\Omega}(z_0)$ holds. Equality holds if and only if Ω is conformally equivalent to the unit disc less a (possible) closed set of inner capacity zero.

- The inequality part of the Suita conjecture for bounded planar domains was solved by Błocki.
- The original form of the inequality part of the Suita conjecture was proved by Guan-Zhou.
- The equality part of the Suita conjecture was proved by Guan-Zhou, which completed the proof of the Suita conjecture.

Let $M = \Omega$ be an open Riemann surface with nontrivial Green function $G_{\Omega}(z, w)$. Let $Z_0 = z_0$ be a point in Ω . Let (V, w) be a local coordinate system of z_0 . Let f = dw on V. Set $\psi = 2G_{\Omega}(z, z_0)$ and $\varphi = 0$. Set $\mathcal{F} = \mathcal{I}(\psi)|_U$. Let $c(t) \equiv 1$.

By definition, we have

$$G(t; c, \varphi, \psi, f, \mathcal{F}) = \frac{2}{B_{\Omega_t}(z_0)},$$

where $B_{\Omega_t}(z_0)$ is the Bergman kernel on $\Omega_t := \{2G_{\Omega}(z, z_0) < -t\}$.

• Denote $Y = z_0$. By direct calculation, we have

$$\int_{\boldsymbol{Y}} |f|^2 dV_\Omega[\psi] = rac{2\pi}{ig(c_eta(z_0)ig)^2}.$$

Hence $(c_{\beta}(z_0))^2 = \pi B_{\Omega}(z_0)$ holds if and only if

$$G(0; c, \varphi, \psi, f, \mathcal{F}) = \pi \int_{Y} |f|^2 dV_{\Omega}[\psi].$$
⁽²⁾

By Theorem 2.1 and Proposition 3.1, we know that equality (2) holds if and only if $G(-\log r; c, \varphi, \psi, f, \mathcal{F})$ is linear with respect to $r \in [0, 1]$.

Hence $(c_{\beta}(z_0))^2 = \pi B_{\Omega}(z_0)$ holds if and only if $G(-\log r; c, \varphi, \psi, f, \mathcal{F})$ is linear with respect to $r \in [0, 1]$.

Linear case

As a corollary of Main Theorem, we give a necessary condition for the concavity degenerating to linearity.

Corollary 3.2 (Guan-Mi-Yuan, Concavity *II*, Researchgate)

Let $c(t) \in \mathcal{G}_T$, if $G(t; c) \in (0, +\infty)$ for some $t \ge T$ and $G(\hat{h}^{-1}(r); c)$ is linear with respect to $r \in [0, \int_T^{+\infty} c(s)e^{-s}ds)$, where $\hat{h}(t) = \int_t^{+\infty} c(l)e^{-l}dl$, then there exists a unique holomorphic (n, 0) form F on M satisfying $(F - f) \in H^0(Z_0, (\mathcal{O}(K_M) \otimes \mathcal{F})|_{Z_0})$ and $G(t; c) = \int_{\{\psi < -t\}} |F|^2 e^{-\varphi} c(-\psi)$ for any $t \ge T$. Furthermore

$$\int_{\{-t_1 \le \psi < -t_2\}} |F|^2 e^{-\varphi} a(-\psi) = \frac{G(T;c)}{\int_T^{+\infty} c(t) e^{-t} dt} \int_{t_2}^{t_1} a(t) e^{-t} dt$$

for any nonnegative measurable function a on $(T, +\infty)$, where $T \le t_2 < t_1 \le +\infty$.

Zhitong Mi (CAS)

August 26, 2022

30 / 39

It follows from Corollary 3.2 that we have the following remark for the linearity of G(t; c) for various c(t).

Remark 3.3 (Guan-Mi-Yuan, Concavity II, Researchgate)

If $\mathcal{H}^2(\widetilde{c}, t_0) \subset \mathcal{H}^2(c, t_0)$ for some $t_0 \geq T$, we have

$$G(t_0;\tilde{c}) = \int_{\{\psi < -t_0\}} |F|^2 e^{-\varphi} \tilde{c}(-\psi) = \frac{G(T;c)}{\int_T^{+\infty} c(t)e^{-t}dt} \int_{t_0}^{+\infty} \tilde{c}(s)e^{-s}ds,$$
(3)

where \tilde{c} is a nonnegative measurable function on $(T, +\infty)$.

We now consider the relation between the linearity of $G(t; \varphi)$ and the function φ . We have the following necessary condition for the linearity of $G(t; \varphi)$ with respect to the weight function φ .

Corollary 3.4 (Guan-Mi, PKMJ, 2022)

If there exists a Lebesgue measurable function $\tilde{\varphi}$ such that $\psi + \tilde{\varphi}$ is a plurisubharmonic function on M and satisfies (1) There exists constant $C_1, C_2 > T$ such that

$$\tilde{\varphi}|_{\{\psi < -C_1\} \cup \{\psi \geq -C_2\}} = \varphi|_{\{\psi < -C_1\} \cup \{\psi \geq -C_2\}}.$$

(2) $\tilde{\varphi} \ge \varphi$ on M and $\tilde{\varphi} > \varphi$ on an open subset U of M. (3) $\tilde{\varphi} - \varphi$ is bounded on M. Then $G(h^{-1}(r); \varphi)$ can not be linear with respect to $r \in (0, \int_{T}^{+\infty} c(t)e^{-t}dt]$.

・ロト ・ 同ト ・ ヨト ・ ヨト

It follows from Corollary 3.4 that we have

Corollary 3.5 (Guan-Mi, PKMJ, 2022)

If $\varphi + \psi$ is a plurisubharmonic function on M and $\varphi + \psi$ is strictly plurisubharmonic at some point $z_0 \in M$. Then $G(h^{-1}(r); \varphi)$ can not be linear with respect to $r \in (0, \int_T^{+\infty} c(t)e^{-t}dt]$.

Let Ω be an open Riemann surface which admits a nontrivial Green function $G_{\Omega}(z, w)$. let $Z_0 = z_0$ be a single point of Ω . Let $\psi = kG_{\Omega}(z, z_0)$, where $k \ge 2$ is a real number. Let φ be a subharmonic function on Ω . Let U be an open neighborhood of z_0 in Ω and f be a holomorphic (1,0) form on U. Let $\mathcal{F} = \mathcal{I}(\psi + 2\varphi)|_U$. Let $c(t) \in C^{\infty}[0, +\infty)$ and $c(t) \in G_0$. Then we can define the function $G(t; c, 2\varphi)$.

We have the following necessary conditions for the minimal L^2 integrals $G(h^{-1}(r); c, 2\varphi)$ to be linear with respect to $r \in (0, \int_0^{+\infty} c(t_1)e^{-t_1}dt_1]$.

Theorem 3.6 (Guan-Mi, PKMJ, 2022)

Assume that $0 < G(0; c, 2\varphi) < +\infty$. If $G(h^{-1}(r); c, 2\varphi)$ is linear with respect to $r \in (0, \int_0^{+\infty} c(t_1)e^{-t_1}dt_1]$, then $\varphi = \log |g| + u$, where g is a holomorphic function on Ω and u is a harmonic function on Ω .

- 4 回 ト 4 ヨ ト 4 ヨ ト

Let $p : \Delta \to X$ be the universal covering from unit disc Δ to Ω . We recall the following notations.

- A character χ on π₁(Ω) is a homomorphism from π₁(Ω) to
 C* = C\{0} which takes values in the unit circle {z ∈ C : |z| = 1}.
- We call the holomorphic function f on Δ is a multiplicative function if there is a character χ on π₁(X), such that g*f = χ(g)f for every g ∈ π₁(Ω) which naturally acts on the universal covering of Ω. Denote the set of such kinds of f by O^χ(Ω).
- For any harmonic function u on Ω , there exists a character χ_u associated to u and a multiplicative function $f_u \in \mathcal{O}^{\chi_u}(X)$, such that $|f_u| = p^* e^u$.
- For Green function $G_X(\cdot, z_0)$, one can find a χ_{z_0} and a multiplicative function $f_{z_0} \in \mathcal{O}^{\chi_{z_0}}(\Omega)$, such that $|f_{z_0}| = p^* e^{G_{\Omega}(\cdot, z_0)}$.

35 / 39

We recall the following notations.

 Let κ_{Ω,ρ} be the weighted Bergman kernel with weight ρ of holomorphic (1,0) form on a Riemann surface Ω.

• Let
$$B_{\Omega,\rho}(z)|dz|^2 := \kappa_{\Omega,\rho}$$
.

• Let u be a harmonic function on Ω and $\rho = e^{-2u}$.

Yamada posed the following extended Suita conjecture.

Extended Suita conjecture (Sūrikaisekikenkyūsho Kōkyūroku No. 1067, 1998)

 $c_{\beta}^2(z_0) \leq \pi \rho(z_0) B_{\Omega,\rho}(z_0)$, and the equality holds if and only if $\chi_{-u} = \chi_{z_0}$.

The extended Suita conjecture was proved by Guan-Zhou.

Let $\psi = 2G_{\Omega}(z, z_0)$ in the definition of $G(t; c, 2\varphi)$. Let $c(t) \in C^{\infty}[0, +\infty)$ and $c(t) \in \mathcal{G}_0$. Using Theorem 3.6 and the solution of extended Suita conjecture by Guan-Zhou, we have the following characterization for $G(h^{-1}(r); c, 2\varphi)$ to be linear.

Theorem 3.7 (Guan-Mi, PKMJ, 2022)

Assume that $0 < G(0; c, 2\varphi) < +\infty$. The minimal L^2 integral function $G(h^{-1}(r); c, 2\varphi)$ is linear with respect to r if and only if the following statements hold: (1) $\varphi = \log |g| + u$, where f_{φ} is a holomorphic function on X and u is a

(1) $\varphi = \log |g| + u$, where f_{φ} is a holomorphic function on X and u is a harmonic function on X.

(2) $\chi_{-u} = \chi_{z_0}$, where χ_{-u} is the character associated to the function -u.

- 1. Qi'an Guan, Zhitong Mi. Concavity of Minimal L^2 Integrals Related to Multiplier Ideal Sheaves, Peking Mathematical Journal, published online, https://doi.org/10.1007/s42543-021-00047-5.
- 2. Qi'an Guan, Zhitong Mi. Concavity of minimal L^2 integrals related to multiplier ideal sheaves on weakly pseudoconvex Kähler manifolds. Sci China Math, 2022, 65: 887-932,
- https://doi.org/10.1007/s11425-021-1930-2.
- 3. Qi'an Guan, Zhitong Mi, Zheng Yuan. Concavity property of minimal L^2 integrals with Lebesgue measurable gain *II*, Researchgate.

Thank you for listening!

э