Volume of a line bundle on a non-compact complex manifold

Xiaoshan Li

Wuhan University 2022 Annual conference of Several Complex Variables Shanghai University

2022/8/17-8/21

Xiaoshan Li (Wuhan University) Volume of a line bundle on a non-compac

2022/8/17-8/21 1 / 22

Background

 $\begin{array}{l} M: \mbox{ compact complex manifold, } \dim_{\mathbb{C}} M = n. \\ (L,h^L) \to M: \mbox{ holomorphic line bundle. } h^L: \mbox{ Hermitian fiber metric.} \\ \mbox{Locally, } h^L = e^{-\varphi}, \varphi \in C^\infty(U,\mathbb{R}). \\ \mathcal{R}^L: \mbox{ Chern curvature of } (L,h^L), \ \mathcal{R}^L = i\partial\overline{\partial}\varphi. \\ \mbox{If } \mathcal{R}^L \geq 0 \mbox{ (or } > 0), \ L \mbox{ is called a semi-positive (or positive) line bundle.} \\ \mbox{For } k \in \mathbb{Z}, k > 0, \mbox{ consider } L^k := L^{\otimes k} \mbox{ and } \\ \Omega^{0,q}(M,L^k) := C^\infty(M, \Lambda^q T^{*0,1}M \otimes L^k). \\ q\text{-th Dolbeault cohomology group:} \end{array}$

$$H^{q}(M, L^{k}) := \frac{\operatorname{Ker}\overline{\partial} : \Omega^{0,q}(M, L^{k}) \to \Omega^{0,q+1}(M, L^{k})}{\operatorname{Im}\overline{\partial} : \Omega^{0,q-1}(M, L^{k}) \to \Omega^{0,q}(M, L^{k})}.$$

For q = 0, $H^0(M, L^k)$: the space of global holomorphic sections. The volume of L is defined by

$$v(L) := \limsup_{k \to \infty} \frac{n!}{k^n} \operatorname{dim} H^0(M, L^k).$$

Background

 $\begin{array}{l} M: \mbox{ compact complex manifold, } \dim_{\mathbb{C}} M = n. \\ (L,h^L) \to M: \mbox{ holomorphic line bundle. } h^L: \mbox{ Hermitian fiber metric.} \\ \mbox{Locally, } h^L = e^{-\varphi}, \varphi \in C^\infty(U,\mathbb{R}). \\ \mathcal{R}^L: \mbox{ Chern curvature of } (L,h^L), \ \mathcal{R}^L = i\partial\overline{\partial}\varphi. \\ \mbox{If } \mathcal{R}^L \geq 0 \ (\mbox{or} > 0), \ L \mbox{ is called a semi-positive (or positive) line bundle.} \\ \mbox{For } k \in \mathbb{Z}, k > 0, \mbox{ consider } L^k := L^{\otimes k} \mbox{ and } \\ \Omega^{0,q}(M,L^k) := C^\infty(M, \Lambda^q T^{*0,1}M \otimes L^k). \\ q\mbox{-th Dolbeault cohomology group:} \end{array}$

$$H^{q}(M, L^{k}) := \frac{\operatorname{Ker}\overline{\partial} : \Omega^{0,q}(M, L^{k}) \to \Omega^{0,q+1}(M, L^{k})}{\operatorname{Im}\overline{\partial} : \Omega^{0,q-1}(M, L^{k}) \to \Omega^{0,q}(M, L^{k})}.$$

For q = 0, $H^0(M, L^k)$: the space of global holomorphic sections. The volume of L is defined by

$$v(L) := \limsup_{k \to \infty} \frac{n!}{k^n} \operatorname{dim} H^0(M, L^k).$$

Background

 $\begin{array}{l} M: \mbox{ compact complex manifold, } \dim_{\mathbb{C}} M = n. \\ (L,h^L) \to M: \mbox{ holomorphic line bundle. } h^L: \mbox{ Hermitian fiber metric.} \\ \mbox{Locally, } h^L = e^{-\varphi}, \varphi \in C^\infty(U,\mathbb{R}). \\ \mathcal{R}^L: \mbox{ Chern curvature of } (L,h^L), \ \mathcal{R}^L = i\partial\overline{\partial}\varphi. \\ \mbox{If } \mathcal{R}^L \geq 0 \ (\mbox{or} > 0), \ L \mbox{ is called a semi-positive (or positive) line bundle.} \\ \mbox{For } k \in \mathbb{Z}, k > 0, \mbox{ consider } L^k := L^{\otimes k} \mbox{ and } \\ \Omega^{0,q}(M,L^k) := C^\infty(M, \Lambda^q T^{*0,1}M \otimes L^k). \\ q\mbox{-th Dolbeault cohomology group:} \end{array}$

$$H^{q}(M, L^{k}) := \frac{\operatorname{Ker}\overline{\partial} : \Omega^{0,q}(M, L^{k}) \to \Omega^{0,q+1}(M, L^{k})}{\operatorname{Im}\overline{\partial} : \Omega^{0,q-1}(M, L^{k}) \to \Omega^{0,q}(M, L^{k})}.$$

For q = 0, $H^0(M, L^k)$: the space of global holomorphic sections. The volume of L is defined by

$$v(L) := \limsup_{k \to \infty} \frac{n!}{k^n} \mathrm{dim} H^0(M, L^k).$$

- Kodaira vanishing theorem(1950s): If L is positive, then $H^q(M, L^k) = 0$ for $q \ge 1$ when k is large.
- If L is positive, then

$$\dim H^0(M, L^k) \gtrsim k^n, k \to \infty,$$

i.e., L is big.

- Kodaira embedding theorem(1950s): If L is positive, then $M \hookrightarrow \mathbb{C}P^n$ by the holomorphic sections of L^k when k is large.
- Grauert-Riemenschneider conjecture (1970): If L is semi-positive and positive at a point of M then L is big.

2022/8/17-8/21

3 / 22

• L is big $\Rightarrow M$ is Moishezon manifold.

The Grauert-Riemschneider conjecture was first solved by Siu(1984) by using the $\overline{\partial}$ -method. Then Demailly(1985) using his holomorphic Morse inequalities gave another proof of this conjecture.

 $M (\Subset M') :$ a relatively compact domain in complex manifold M' with smooth boundary.

 $M:=\{\rho<0\},\ \rho\in C^\infty(M') \text{ is a defining function for } M.$

$$\begin{split} \mathcal{L} &= i\partial\overline{\partial}\rho|_{T^{1,0}(\partial M)} \text{: Levi-form on } M. \\ \text{If } \mathcal{L} \geq 0, \ M \text{ is called weakly pseudoconvex. If } \mathcal{L} < 0, \ M \text{ is called strongly} \\ \text{pseudoconcave.} \end{split}$$

 $(L,h) \rightarrow M'$: holomorphic line bundle.

 $H^0(M, L^k)$: The space of holomorphic sections of L^k .

Problem: When $\dim H^0(M, L^k) \gtrsim k^n, k \to \infty$?

Extending Demailly's holomorphic Morse inequalities to non-compact complex manifolds:

- Bouche(1989), *q*-convex manifold, semi-positive holomorphic line bundle.
- Marinescu(1996), *q*-concave manifold, semi-negative holomorphic line bundle.
- Berman(2005), complex manifold with compact smooth boundary satisfying Z(q)-condition, no assumptions on the curvature of the line bundle.

After some integration assumption on the curvature of the line bundle, they got the 'big' property of line bundle on non-compact complex manifolds.

Motivation

Conjecture(Henkin, Marinescu(96)) Let $M (\Subset M')$ be a strongly pseudoconcave complex manifold of $\dim M = n, n \ge 3$. Let $(L, h) \to M'$ be a positive line bundle. Then

$$\dim H^0(M, L^k) \gtrsim k^n, k \to \infty.$$

Example:

Y: a compact complex manifold, $\dim_{\mathbb{C}} Y = n.$ $(L,h) \to Y:$ positive holomorphic line bundle. Then $\dim H^0(Y,L^k)\gtrsim k^n, k\to\infty.$ Take $M:=Y\setminus \overline{\mathbf{B}^n}$ where \mathbf{B}^n is a Euclidean unit ball. Then M is strongly pseudoconcave and

$$\dim H^0(M, L^k) \gtrsim k^n, k \to \infty.$$

Theorem(Marinescu, 1996)

Let $M (\Subset M')$ be a strongly pseudoconcave manifold of dimension $n,n \geq 3$. Let $(L,h) \to M'$ be a positive holomorphic line bundle. If

$$\dim H^0(M, L^k) \gtrsim k^n, k \to \infty,$$

then there is a compact Moisezon manifold \widehat{M} which contains M as an open set.

Theorem (Hsiao-L., Asian J. Math., 2018; Herrmann-Hsiao-L., Math. Res. Lett., to appear)

Let $(X, T^{1,0}X)$ be a compact CR manifold of dimension $2n - 1, n \ge 2$. Let $(L, h) \to X$ be a positive CR line bundle. Assume that X admits a transversal CR S^1 -action(or \mathbb{R} -action) which can be lifted to L. Then L is big, i.e.,

 ${\rm dim} H^0_b(X,L^k)\gtrsim k^n, k\to\infty.$

Question: Can one extend CR sections of a holomorphic line bundle to holomorphic sections?

Kohn-Rossi(1965) If there is a non-trivial holomorphic function on M and the Levi-form of M has at least one positive eigenvalue everywhere, then all the CR sections of $L|_{\partial M}$ can be meromorphically extended into M.

Theorem (Hsiao-L., Asian J. Math., 2018; Herrmann-Hsiao-L., Math. Res. Lett., to appear)

Let $(X, T^{1,0}X)$ be a compact CR manifold of dimension $2n - 1, n \ge 2$. Let $(L, h) \to X$ be a positive CR line bundle. Assume that X admits a transversal CR S^1 -action(or \mathbb{R} -action) which can be lifted to L. Then L is big, i.e.,

$$\dim H^0_b(X, L^k) \gtrsim k^n, k \to \infty.$$

Question: Can one extend CR sections of a holomorphic line bundle to holomorphic sections?

Kohn-Rossi(1965) If there is a non-trivial holomorphic function on M and the Levi-form of M has at least one positive eigenvalue everywhere, then all the CR sections of $L|_{\partial M}$ can be meromorphically extended into M.

Theorem (Hsiao-L., Asian J. Math., 2018; Herrmann-Hsiao-L., Math. Res. Lett., to appear)

Let $(X, T^{1,0}X)$ be a compact CR manifold of dimension $2n - 1, n \ge 2$. Let $(L, h) \to X$ be a positive CR line bundle. Assume that X admits a transversal CR S^1 -action(or \mathbb{R} -action) which can be lifted to L. Then L is big, i.e.,

$$\dim H^0_b(X, L^k) \gtrsim k^n, k \to \infty.$$

Question: Can one extend CR sections of a holomorphic line bundle to holomorphic sections?

Kohn-Rossi(1965) If there is a non-trivial holomorphic function on M and the Levi-form of M has at least one positive eigenvalue everywhere, then all the CR sections of $L|_{\partial M}$ can be meromorphically extended into M.

A (10) A (10) A (10)

- $M \Subset M'$: a relatively compact domain with smooth boundary in a complex manifold M'.
- $X := \partial M$, $T^{1,0}X := T^{1,0}M' \cap \mathbb{C}TX$. $(X, T^{1,0}X)$ is a CR manifold.
- $(L,h) \to M'$: holomorphic line bundle.
- $L_X := L|_X$ is a CR line bundle over X.
- $H_b^0(X, L_X)$: the space of smooth CR sections of L_X .

- Assume M' admits a holomorphic \mathbb{R} -action.
- $T \in C^{\infty}(M', TM')$: the infinitesimal generator of the action.
- Suppose the $\mathbb R\text{-}action$ preserves the boundary of M and satisfies the following transversal property

$$\mathbb{C}T_x X = \mathbb{C}T(x) \oplus T^{1,0} X \oplus T^{0,1} X, \forall x \in X.$$

2022/8/17-8/21

- Suppose $(L, h^L) \to M'$ is positive.
- Assume the \mathbb{R} -action can be lifted to L.
- Let s be a local $\mathbb R\text{-invariant}$ holomorphic trivializing section of L, $|s|^2=e^{-2\phi}.$
- Since h^L is \mathbb{R} -invariant, then $JT(\phi)$ is globally well defined, where J is the complex structure on M'.

2022/8/17-8/21

- \mathcal{R}^{L_X} : Chern curvature of the CR line bundle $L_X := L|_X$.
- $\mathcal{R}_x^{L_X} = \mathcal{R}^L|_{T^{1,0}X} + 2JT(\phi)(x)\mathcal{L}_x, \forall x \in X.$
- \mathcal{R}^{L_X} could be degenerate even \mathcal{R}^L is positive.

• In joint works with Herrmann, Hsiao and Marinescu, we see that if

$$\mathcal{R}^{L_X} + c\mathcal{L} > 0 \text{ on } T^{1,0}X$$

for some c > 0, we established the 'big' property of L_X .

• We make the following technical conditions: There is a constant $C_0 > 0$ such that

$$\mathcal{R}_x^L + (C_0 + 2(JT)(\phi)(x))\mathcal{L}_x > 0 \text{ on } T_x^{1,0}X, \forall x \in X,$$

$$C_0 + 2(JT)(\phi)(x) > 0, \forall x \in X.$$
(1)

- The conditions (1) always hold if $X := \partial M$ is weakly pseudoconvex.
- The conditions (1) hold for some class of pseudoconcave manifolds.

Theorem (Hsiao-L.-Marinescu, 2022)

Let $M \Subset M'$ be a complex manifold with compact smooth boundary. Let $(L,h) \to M'$ be a positive holomorphic line bundle. Assume that M' admits a holomorphic \mathbb{R} -action which can be lifted to L, preserves the boundary ∂M and satisfies transversal property. Under the technical condition as above, L is big on M, i.e., we have

 $\dim H^0(M, L^k) \gtrsim k^n, k \to \infty.$

2022/8/17-8/21

- Fix a \mathbb{R} -invariant Hermitian metric $\langle \cdot | \cdot \rangle$ on $\mathbb{C}TM'$.
- Take a \mathbb{R} -invariant defining function ρ so that $|d\rho| = 1$ on X.
- $(\cdot|\cdot)_{\overline{M},k}$: inner product on $C^{\infty}(\overline{M},L^k)$ induced by $\langle\cdot|\cdot\rangle$ and h^k .
- Let $L^2(M, L^k)$ be the completion of $C^{\infty}(\overline{M}, L^k)$ under $(\cdot|\cdot)_{\overline{M},k}$.

•
$$-iT: C^{\infty}(\overline{M}, L^k) \to C^{\infty}(\overline{M}, L^k).$$

- We still use the notation -iT for the closure in $L^2(M, L^k)$ of the -iT.
- $\bullet \ -iT: \mathrm{Dom}(-iT) \subset L^2(M,L^k) \to L^2(M,L^k) \text{ is self-adjoint.}$
- The Spec $(-iT) \subset \mathbb{R}$ is countable, discrete and every element in Spec (-iT) is an eigenvalue of -iT.
- For $\alpha \in \operatorname{Spec}(-iT)$, $H^0_{b,\alpha}(X, L^k) := \{u \in H^0_b(X, L^k) : -iTu = \alpha u\}.$
- For $\delta > 0$, $H^0_{b,[\frac{k\delta}{2}, k\delta]}(X, L^k) := \bigoplus_{\alpha \in \operatorname{Spec}(-iT), \frac{k\delta}{2} \le \alpha \le k\delta} H^0_{b,\alpha}(X, L^k).$

Theorem (Hsiao-Herrmann-L., Math. Res. Lett., to appear)

Let $(X, T^{1,0}X)$ be a compact CR manifold of dimension $2n - 1, n \ge 2$ with a transversal and CR \mathbb{R} -action. Let $L \to X$ be a positive CR line bundle over X. Assume that the \mathbb{R} -action can be lifted to the L. Then

$$\dim H^0_{b,[\frac{k\delta}{2}, k\delta]}(X, L^k) \gtrsim k^n, k \to \infty.$$

Question: Can the sections in $H^0_{b,[\frac{k\delta}{2}, k\delta]}(X, L^k)$ be holomorphically extended to M? If so, then

$$\dim H^0(M, L^k) \gtrsim k^n, k \to \infty.$$

2022/8/17-8/21

Weighted projection

• Fix $\delta > 0$ s.t. $\mathcal{R}_x^{L_X} + 2t\mathcal{L}_x > 0, \forall x \in X, t \in [\frac{\delta}{4}, 2\delta],$ $t + (JT)(\phi)(x) > 0, \forall x \in X, t \in [\frac{\delta}{4}, 2\delta].$

- Choose $\tau_{\delta}(t) \in C_0^{\infty}(\frac{\delta}{4}, 2\delta)$ s.t. $0 \le \tau_{\delta} \le 1, \tau_{\delta} \equiv 1, t \in [\frac{\delta}{2}, \delta].$
- $\tau_{k\delta}(t) := \tau_{\delta}(\frac{t}{k}).$
- For $\alpha \in \operatorname{Spec}(-iT)$, $Q_{\alpha}: L^{2}(X, L^{k}) \to L^{2}_{\alpha}(X, L^{k})$: orthogonal projection.
- $F_{k\delta,X}: L^2(X,L^k) \to L^2(X,L^k)$: weighted projection.
- $F_{k\delta,X}(u) := \sum_{\alpha \in \operatorname{Spec}(-iT)} \tau_{k\delta}(\alpha) Q_{\alpha} u, \forall u \in L^2(X, L^k).$

Sketch of proof of the main result

- $S_k: L^2(X, L^k) \to \operatorname{Ker}(\overline{\partial}_b)$: Szegő projection.
- Weighted Szegő projection: $S_{\tau_{k\delta}} := S_k \circ F_{k\delta,X} : L^2(X, L^k) \to \operatorname{Ker}(\overline{\partial}_b).$
- $P_k^{(0)}: C^{\infty}(X, L^k) \to C^{\infty}(\overline{M}, L^k)$: Poisson operator with respect to complex Laplacian $\Box_{f,k}^{(0)} := \overline{\partial}_f^* \overline{\partial}$, i.e.,
- $\overline{\partial}_{f}^{*}\overline{\partial}P_{k}^{(0)} = 0$, $\gamma P_{k}^{(0)} = \mathrm{id}$, where γ is the restriction operator to the boundary X.
- $\overline{\partial}_f^* \overline{\partial} P_k^{(0)} S_{\tau_{k\delta}} = 0.$
- Claim: $\overline{\partial} P_k^{(0)} S_{\tau_k \delta} = 0$ when k is large.
- The Claim implies that

$$\dim H^0(M, L^k) \gtrsim k^n, k \to \infty.$$

Sketch of proof of the Claim

•
$$\overline{\partial}_{f}^{*}\overline{\partial}P_{k}^{(0)}S_{\tau_{k\delta}} = 0.$$

• $\gamma\overline{\partial}_{f}^{*}\overline{\partial}P_{k}^{(1)}\gamma\overline{\partial}P_{k}^{(0)}S_{\tau_{k\delta}} = 0.$

Since $\overline{\partial}_b S_{\tau_{k\delta}} = 0$, one can show that

۲

$$0 = 2((\overline{\partial}\rho)\wedge) \circ \gamma \overline{\partial}_{f}^{*} \overline{\partial} P_{k}^{(0)} S_{\tau_{k\delta}}$$

$$= 2((\overline{\partial}\rho)\wedge)\gamma \overline{\partial}_{f}^{*} P_{k}^{(1)} \gamma \overline{\partial} P_{k}^{(0)} S_{\tau_{k\delta}}$$

$$= (N_{k} + iT + Z_{0})\gamma \overline{\partial} P_{k}^{(0)} S_{\tau_{k\delta}}$$

• $N_k := \gamma(rac{\partial}{\partial
ho})^* P_k^{(1)}$: Neumann operator.

• Z_0 : k-independent zero order differential operator.

• The Neumann operator N_k satisfies the following uniform estimate:

$$(N_k \gamma \overline{\partial} P_k^{(0)} S_{\tau_{k\delta}} u | \gamma \overline{\partial} P_k^{(0)} S_{\tau_{k\delta}} u)_X \le C \| \gamma \overline{\partial} P_k^{(0)} S_{\tau_{k\delta}} u \|_X^2.$$

2022/8/17-8/21

- C > 0 is a constant independent of k.
- $(-iT\gamma\overline{\partial}P_k^{(0)}S_{\tau_{k\delta}}u|\gamma\overline{\partial}P_k^{(0)}S_{\tau_{k\delta}}u)_X \ge \frac{k\delta}{4}\|\gamma\overline{\partial}P_k^{(0)}S_{\tau_{k\delta}}u\|_X^2.$
- For k large, $\gamma \overline{\partial} P_k^{(0)} S_{\tau_{k\delta}} u = 0, \forall u \in C^{\infty}(X, L^k).$
- $\overline{\partial} P_k^{(0)} S_{\tau_k \delta} u = 0, \forall u \in C^{\infty}(X, L^k)$ when k is large.

Thanks a lot!

イロト イヨト イヨト イヨト

2022/8/17-8/21

3