Linear isometric invariants of bounded domains and their plurisubharmonic variation

邓富声 中国科学院大学数学科学学院

2022年全国多复变学术年会上海大学，2022年8月18日

Based on the following works:
(1) F. Deng, Z. Wang, L. Zhang, X. Zhou: Linear invariants of complex manifolds and their plurisubharmonic variations, J. Funct. Anal. 279 (2020), no.1, 108514, arXiv:1901.08920.
(2) F. Deng, J. Ning, Z. Wang, X. Zhou: Linear isometric invariants of bounded domains, preprint (2022).

Background and motivation

Linear isometric invariants of bounded domains and their plurisubhar-
monic variation
X_{1}, X_{2} are Stein manifolds, then:

$$
X_{1} \simeq X_{2}
$$

$$
\mathcal{O}\left(X_{1}\right) \simeq \mathcal{O}\left(X_{2}\right) \text { as } \mathbb{C} \text {-algebras with unit. }
$$

Background and motivation

Linear isometric invariants of bounded domains and their plurisubhar-
monic variation

Functority property: Given $T: \mathcal{O}\left(X_{1}\right) \simeq \mathcal{O}\left(X_{2}\right)$, can construct $f: X_{1} \simeq X_{2}$:

- $\operatorname{Spm}=\{$ finitely generated maximal ideals $\}$
- $\sigma_{1}(z)=\left\{f \in \mathcal{O}\left(X_{1}\right) \mid f(z)=0\right\}$
- Bijection of σ_{i} is proved by Cartan A, B.

Background and motivation

Similar picture in algebraic geometry: X_{1}, X_{2} are projective manifolds of general type (canonical bundle big). Let

$$
K(X)=\bigoplus_{m \geq 0} H^{0}\left(X, m K_{X}\right)
$$

be the canonical ring. MMP:

$$
X_{1}, X_{2} \text { are birational }
$$

$$
K\left(X_{1}\right) \simeq K\left(X_{2}\right) \text { as graded } \mathbb{C} \text {-algebras. }
$$

Background and motivation

Linear isometric invariants of
bounded
domains
and their plurisubhar-
monic variation

- In the above examples, product structure on the algebraic objects are very important.
- On the other hand, Banach originated the study on characterization of measure spaces via linear and metric structures of their L^{p} spaces (without product structure).
- Royden's work on compact Riemann surfaces: X, Y compact R.S. of genus ≥ 2, then

$$
X \simeq Y
$$

$$
H^{0}\left(X, 2 K_{X}\right) \simeq H^{0}\left(Y, 2 K_{Y}\right) \text { as Banach spaces. }
$$

- Markovic's generalization to noncompact Riemann surfaces, and Chi-Yau's generalization to higher dimensional projective manifolds.
- This lecture aims to present a generalization to bounded domains.

Linear invariants of bounded domains

Linear
isometric invariants of bounded domains and their plurisubhar-
monic variation

Let $D \subset \mathbb{C}^{n}$ be bounded domain and $p>0$, we define:

$$
\begin{gathered}
A^{p}(D)=\left\{\phi \in \mathcal{O}(D) \mid\|\phi\|_{p}:=\left(\int_{D}|\phi|^{p}\right)^{1 / p}<\infty\right\} \\
B_{D, p}(z):=\sup _{\phi \in A^{p}(D)} \frac{|\phi(z)|^{2}}{\|\phi\|_{p}^{2}}
\end{gathered}
$$

Definition

$B_{D, p}(z)$ is called the p-Bergman kernel of D. When $p=2$, it is the ordinary Bergman kernel.

From now on, we always assume $p>0$ is not an integer.

Basic notions

Linear isometric invariants of bounded domains and their plurisubhar-
monic variation

Definition

$B_{D, p}(z)$ is called exhaustive if $\left\{z \in D \mid B_{D, p}(z) \leq c\right\} \Subset D$ for any $c>0$.

Definition

D is called hyperconvex if \exists a p.s.h function $\rho: D \rightarrow[-\infty, 0)$ s.t. $\forall c<0$ the set $\{z \in D \mid \rho(z) \leq c\} \Subset D$.

Definition

That $T: A^{p}\left(D_{1}\right) \rightarrow A^{p}\left(D_{2}\right), \phi \mapsto T \phi$ is a linear isometry means that T is a linear isomorphism and $\|T \phi\|_{p}=\|\phi\|_{p}$ for all $\phi \in A^{p}\left(D_{1}\right)$.

Linear invariants of bounded domains

Linear
isometric invariants of
bounded
domains
and their plurisubhar-
monic variation

Theorem (D-Wang-Zhang-Zhou)

Let $D_{1} \subset \mathbb{C}^{n}$ and $D_{2} \subset \mathbb{C}^{m}$ be bounded hyperconvex domains. Suppose $\exists p>0$ such that
(1) $\exists T: A^{p}\left(D_{1}\right) \rightarrow A^{p}\left(D_{2}\right)$ linear isometry,
(2) the p-Bergman kernels of D_{1} and D_{2} are exhaustive. Then $m=n$ and $D_{1} \cong D_{2}$

- V. Markovic (2003): for the case $D_{1}, D_{2} \subset \mathbb{C}$ and $p=1$, motivated by Teichmüller theory.
- Recently, Inayama get a relative version of it.

Remark: $A^{p}(X)$ can be defined intrinsically for a complex manifold X if p is of the form $\frac{2}{m}, m \in \mathbb{N}$.

A^{p}-completeness

Linear
isometric nvariants of
bounded
domains
and their plurisubhar-
monic
variation

We discuss and improvement of the above result.
We first relax the condition of p-Bergman kernel exhaustion.

Definition

A bounded domain $D \subset \mathbb{C}^{n}$ is A^{p}-complete if $\nexists \tilde{D} \subset \mathbb{C}^{n}$ with $D \varsubsetneqq \tilde{D}$ such that the restriction map $i: A^{p}(\tilde{D}) \rightarrow A^{p}(D)$ is a linear isometry.

For example, D is A^{p}-complete if:
(1) the p-Bergman kernel of D is exhaustive; or
(2) $\stackrel{\circ}{D}=D$, namely, the interior of the closure of D is D itself.

A^{p}-completeness

Linear
isometric invariants of
bounded
domains
and their plurisubhar-
monic
variation

The importance of A^{p}-completeness is encoded in the following

Theorem (D-Ning-Wang-Zhou)

Assume $D_{1}, D_{2} \Subset \mathbb{C}^{n}$ are A^{p}-complete, and \exists a linear i sometry $T: A^{p}\left(D_{1}\right) \rightarrow A^{p}\left(D_{2}\right)$. Then \exists hypersurfaces $A_{1} \subset D_{1}, A_{2} \subset D_{2}$ (may be empty) and a biholomorphic map

$$
F: D_{1} \backslash A_{1} \rightarrow D_{2} \backslash A_{2}
$$

with

$$
F_{1}\left(A_{1}\right) \subset \partial D_{2}, F_{2}\left(A_{2}\right) \subset \partial D_{1}
$$

We can glue D_{1} and D_{2} via F to get a complex manifold.

Boundary blow down type

Linear isometric invariants of
bounded domains and their plurisubhar-
monic variation

We second relax the condition of hyperconvexity of D.
Motivated by the above theorem, we propose the following

Definition

$D \subset \mathbb{C}^{n}$ is of boundary blow down type, if there exists a complex manifold M, a (nonempty) hypersurface $A \subset M$, $h \in \mathcal{M}(M) \cap \mathcal{O}(M \backslash A)$, and a holomorphic map $\sigma: M \rightarrow \mathbb{C}^{n}$, such that
(i) $\sigma(M \backslash A)=D$ and $\sigma(A) \subset \partial D$,
(ii) $\left.\sigma\right|_{M \backslash A}: M \backslash A \rightarrow D$ is a biholomorphic map,
(iii) $h^{-1}(\infty)=A$.

Boundary blow down type

Linear isometric invariants of bounded domains and their plurisubhar-
monic variation

Some examples of domains that are NOT of boundary blow down type:
(i) Runge domains,
(ii) hyperconvex domains
(iii) $D \backslash K$, where D is Runge or hyperconvex and $K \subset D$ compact.
Remark:
(iii) above makes us able to handle some domains that are not pseudoconvex.

Main result

Linear
isometric

Theorem (D-Ning-Wang-Zhou)

Assume $D_{1}, D_{2} \Subset \mathbb{C}^{n}$ are A^{p}-complete and are not of boundary blow down type, and $T: A^{p}\left(D_{1}\right) \rightarrow A^{p}\left(D_{2}\right)$ is a linear isometry for some $p>0$. Then \exists ! biholomorphic map $F: D_{1} \rightarrow D_{2}$ s.t.

$$
T \phi(F(z)) J_{F}(z)^{2 / p}=\lambda \phi(z), \forall \phi \in A^{p}\left(D_{1}\right), z \in D_{1}
$$

where $\lambda \in \mathbb{C},|\lambda|=1$.

Application to domains with certain boundary regularity

Linear isometric invariants of
bounded
domains
and their plurisubhar-
monic
variation

Corollary

Assume $D_{1}, D_{2} \Subset \mathbb{C}^{n}$ are pseudoconvex domains with Hölder boundary. If there exists a linear isometry between $A^{p}\left(D_{1}\right)$ and $A^{p}\left(D_{2}\right)$ for some $p>0$, then $D_{1} \cong D_{2}$.

A conjecture

For $p \in(0,2)$, we believe that the condition of not being BBDT in the above theorem is not necessary.

Conjecture

Let $D_{1}, D_{2} \Subset \mathbb{C}^{n}$ be A^{p}-complete for some $p \in(0,2)$. If there is a linear isometry between $A^{p}\left(D_{1}\right)$ and $A^{p}\left(D_{2}\right)$, then $D_{1} \cong D_{2}$.

A counter-example can be constructed if $p>2$.

How to construct the map $F: D_{1} \cong D_{2}$?

Linear isometric invariants of bounded domains and their plurisubhar-
monic variation

Maximal ideals replaced by hypersurfaces:

- $P\left(A^{p}\left(D_{1}\right)^{*}\right):=\left\{\right.$ hyperplanes in $\left.A^{p}\left(D_{1}\right)\right\}$.
- $\sigma_{1}(z)=\left\{\phi \in A^{p}\left(D_{1}\right) \mid \phi(z)=0\right\} \in P\left(A^{p}\left(D_{1}\right)^{*}\right)$.
- need show that $T_{*} \sigma_{1}\left(D_{1}\right)=\sigma_{2}\left(D_{2}\right)$, and F is biholomorphic.

Further study

Generalize the methods and results to complex manifolds equipped with Hermitian holomorphic vector bundles and develop some relative version.

Plurisubharmonic variation of linear invariants

Linear
isometric nvariants of bounded
domains
and their plurisubhar-
monic variation

Consider pseuconvex domain $\Omega \subset \mathbb{C}_{t}^{n} \times \mathbb{C}_{z}^{m}$ and let $B=$ $p(\Omega) \subset \mathbb{C}^{n}$, where $p: \mathbb{C}^{n} \times \mathbb{C}^{m} \rightarrow \mathbb{C}^{n}$ is the natural projection. Let $\Omega_{t}=p^{-1}(t)$ and $E_{t}=A^{p}\left(\Omega_{t}\right)$ for $t \in B$. Then

$$
E:=\bigsqcup_{t \in B} E_{t} \rightarrow B
$$

can be roughly seen as a vector bundle over B with a (singular) Finsler metric.

Plurisubharmonic variation of linear invariants

Theorem (D-Wang-Zhang-Zhou)

The curvature of E is semipositive in the sense of Griffiths for $p \in(0,2]$.

Proof based on optimal L^{2}-extension theory developed in recent years by Guan, Zhou, and Zhu.
Similar results also holds for more general families of complex manifolds.

Linear isometric invariants of bounded domains and their plurisubharmonic variation谢谢!

