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Motivation

The largest number of nonzero weights a linear code of given
length and dimension has been studied [1].

We are now ready to address the same type of questions for cyclic
codes. Thus, we study the function Γ(k, q), the largest number of
nonzero weights a cyclic code of dimension k over Fq can have.

[1] M. Shi, H. Zhu, P. Solé, G.D.Cohen, How many weights can a
linear code have ? , Des. Codes and Crypt. To appear (2018).



Definitions and Notation

2.1 Linear codes

A (linear) code C of length n over a finite field Fq is a Fq vector
subspace of Fn

q. The dimension of the code is its dimension as a Fq

vector space, and is denoted by k. The elements of C are called
codewords.

The dual C⊥ of a linear code C is understood w.r.t. the standard
inner product. The minimum nonzero weight d of a linear code is
called the minimum distance.

Every linear code satisfies the Singleton bound on its parameters
d ≤ n − k + 1. A code meeting that bound is called MDS. See [2]
for general knowledge on this family of codes.

[2] F.J. MacWilliams, N.J.A. Sloane, The theory of error correcting
code, North Holland, Amsterdam (1977).



2.2 Cyclic codes

A cyclic code of length n over a finite field Fq is a Fq linear code
of length n invariant under the coordinate shift. Under the
polynomial correspondence a cyclic code of length n can be
regarded as an ideal in the ring Fq[x ]/(xn − 1).

It can be shown that this ideal is principal, with a unique monic
generator g(x), called the generator polynomial of the code.
The check polynomial h(x) is then defined as the quotient
(xn − 1)/g(x).



A well-known fact is that the codewords are the periods of the
linear recurrence of characteristic polynomial the reciprocal
polynomial of h(x). Thus any codeword c can be continued into an
infinite periodic sequence ĉ which is periodic of period n.

The period of a codeword c is understood to be the smallest
integer T such ĉi+T = ĉi for all integers i . Thus the period is
always a divisor of n.



A cyclic code is irreducible over Fq if its check polynomial h(x) is
irreducible over Fq[x ].

The period of a polynomial h(x) ∈ Fq[x ], such that h(0) 6= 0 is
the smallest integer T such that h(x) divides xT − 1 over Fq[x ].

If C is a cyclic code, its codewords are partitioned into orbits under
the action of the shift. We call these orbits the cyclic classes of C .



2.3 Combinatorial functions

Define Γ(k , q) as the largest number of nonzero weights of a cyclic
code of dimension k over Fq.

Define Γ(n, k, q) as the largest number of nonzero weights of a
cyclic code of length n and dimension k over Fq, if such a code
exists, and by zero otherwise.

The same functions for strongly cyclic codes (to be defined
below) are denoted by Γ0(k , q), and Γ0(n, k, q), respectively.



3.1 Cyclic Structure

If C is a cyclic code, denote by Bt the number of nonzero
codewords of period t it contains. A cyclic code such that Bt = 0
for 1 ≤ t < n shall be called strongly cyclic.

Lemma 1

If C is an [n, k]q cyclic code with s nonzero weights, then

s ≤
∑
t|n

Bt

t
.

Proof The number of cyclic classes of codewords of period t is at
most Bt

t . All codewords in the same class share the same weight. �



Example

Consider the code of dimension 2 over F5, with length 20 and
check polynomial x2 + x − 1. This code contains the Fibonacci
numbers mod 5 [3][A082116]. It can be checked to contain 4
codewords of period 4 (namely 1, 3, 4, 2, repeated five times) and
20 codewords of period 20. Thus, it is a two-weight code satisfying
B4
4 = B20

20 = 1. The bound of Lemma 1 is met with equality.

[3] Online Encyclopedia of Integer Sequences www.oeis.org



{(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0), (1 0 1 4 2 2 0 2 3 4 4 0
4 1 3 3 0 3 2 1), (2 0 2 3 4 4 0 4 1 3 3 0 3 2 1 1 0 1 4 2), (3 0 3 2
1 1 0 1 4 2 2 0 2 3 4 4 0 4 1 3), (4 0 4 1 3 3 0 3 2 1 1 0 1 4 2 2 0
2 3 4), (4 1 3 3 0 3 2 1 1 0 1 4 2 2 0 2 3 4 4 0), (0 1 4 2 2 0 2 3 4
4 0 4 1 3 3 0 3 2 1 1), (1 1 0 1 4 2 2 0 2 3 4 4 0 4 1 3 3 0 3 2), (2
1 1 0 1 4 2 2 0 2 3 4 4 0 4 1 3 3 0 3), (3 1 2 4 3 1 2 4 3 1 2 4 3 1
2 4 3 1 2 4), (3 2 1 1 0 1 4 2 2 0 2 3 4 4 0 4 1 3 3 0), (4 2 2 0 2 3
4 4 0 4 1 3 3 0 3 2 1 1 0 1), (0 2 3 4 4 0 4 1 3 3 0 3 2 1 1 0 1 4 2
2), (1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3), (2 2 0 2 3 4 4 0 4 1 3
3 0 3 2 1 1 0 1 4), (2 3 4 4 0 4 1 3 3 0 3 2 1 1 0 1 4 2 2 0), (3 3 0
3 2 1 1 0 1 4 2 2 0 2 3 4 4 0 4 1), (4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2
4 3 1 2), (0 3 2 1 1 0 1 4 2 2 0 2 3 4 4 0 4 1 3 3), (1 3 3 0 3 2 1 1
0 1 4 2 2 0 2 3 4 4 0 4), (1 4 2 2 0 2 3 4 4 0 4 1 3 3 0 3 2 1 1 0),
(2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1 2 4 3 1), (3 4 4 0 4 1 3 3 0 3 2 1 1
0 1 4 2 2 0 2), (4 4 0 4 1 3 3 0 3 2 1 1 0 1 4 2 2 0 2 3), (0 4 1 3 3
0 3 2 1 1 0 1 4 2 2 0 2 3 4 4)}



This simple counting lemma has two important applications. First,

we improve the upper bound on L(k, q) ≤ qk−1
q−1 of [1, Prop. 2] by a

factor n
q−1 for some large class of cyclic codes.

Theorem 2

If C is a [n, k]q strongly cyclic code with s nonzero weights, then

s ≤ qk − 1

n
.

Thus Γ0(n, k , q) ≤ qk−1
n .

Proof We apply the lemma when Bt = 0 for t < n, so that the
sum in the right handside contains only one summand. �



Theorem 3

If C is an [n, k]q cyclic code with s nonzero weights, not
containing the all-one codeword, then

s2 ≤ (qk − 1)2
∑
1<t|n

1

t2
.

Proof. Note that, by hypothesis, B1 = 0. Squaring the bound in
the lemma, and applying Cauchy-Schwarz inequality we obtain

s2 ≤
∑
1<t|n

B2
t

∑
1<t|n

1

t2
.

By definition of the Bt ’s note that
∑

t|n Bt = qk − 1, implying∑
t|n B2

t ≤ (qk − 1)2. The result follows. �

Remark : Trivially, s ≤ qk − 1 for all linear codes, so we avoid
B1 > 0 and the summation on t to be > 1.



3.2 Character sums

The following result can be derived by using the character sums
techniques of [4].

Theorem 4

If C is an [n, k]q strongly cyclic code with s weights, then
s ≤ 2(1− 1

q )qk/2. Thus Γ0(n, k , q) ≤ 2(1− 1
q )qk/2.

Proof By [4, Cor. 8.83] we know that the weights w of C lie in
the range

|n(1− 1

q
)− w | ≤ (1− 1

q
)qk/2.

The result follows by computing the length of that interval. �
[4] R. Lidl, H. Niederreiter, Finite fields, Encycl. of Math and
Appl., vol. 20, Cambridge (1997).



3.3 Irreducible cyclic codes

The weight structure of irreducible cyclic codes has been a
research topic since the first works of McEliece and others [4-6]
due to their connection to Gauss sums and L-functions, and its
intrinsic complexity.

[5] C. Ding, J. Yang, Hamming weights of irreducible cyclic codes,
Discr. Math., 313 (4), (2013), 434–446.

[6] R.J. MacEliece, Irreducible Cyclic Codes and Gauss Sums,
Combinatorica, 16, (1975), 185–202.



Theorem 5

If C is an [n = qk−1
N , k]q irreducible cyclic code with a check

polynomial of period n, and s nonzero weights, then s ≤ N.

Proof. Since the check polynomial h(x) is irreducible it generates
the annihilating ideal of each sequence attached to a codeword. If
the period of such a sequence were T < n, then h(x) would divide
xT − 1, contradicting the hypothesis on the period of h(x). Hence
C is strongly cyclic, and we can apply Theorem 2. The result
follows. �
Example : Consider the case of N = 2, and q = p an odd prime.
Such a code is well-known to be a two-weight code [6].



A slightly sharper bound can be derived using the results in [[5],
Ding and Yang 2013], DM.

Theorem 6

If C is an [n = qk−1
N , k]q irreducible cyclic code with a check

polynomial of period n, and s nonzero weights then

s ≤ Nk = GCD(N, q
k−1
q−1 ).

Proof Follows by [5, (12)] which involves Gaussian periods of
order Nk . �



Theorem 7

If C is an [n = qk−1
N , k]q irreducible cyclic code with a check

polynomial of period n, and s nonzero weights then
s ≤ 2(1− 1

q )
√

1 + nN.

Proof. As explained in the proof of Theorem 5 we know that all
nonzero codewords have period n. Thus the code C is strongly
cyclic, and we can apply Theorem 4. We get rid of k in Theorem 4
by writing qk = 1 + nN. �

Remark : Depending on the relative values of n and N, either
Theorem 7, or Theorem 6 is sharper than the other.



A slight improvement on Theorem 7 can be derived for irreducible
cyclic codes.

Theorem 8

If C is an [n = qk−1
N , k]q irreducible cyclic code with a check

polynomial of period n, and s nonzero weights then
s ≤ 2(1− 1

q )(nh −
1
N )
√

1 + nN where h = LCM(n, q − 1).

Proof The proof follows the lines of Theorem 7 with [4, Th. 8.84,
(8.37)] replacing [4, Cor. 8.83]. We get rid of k by writing
qk = 1 + nN. �



4 Lower bounds

4.1 Special values

Proposition 1

For all prime powers q, we have Γ(k , q) ≥ k .

Proof The universe code, the cyclic [k , k]q code with generator
the zero polynomial, has k nonzero weights. This shows that
Γ(k , k , q) ≥ k . The result follows by Γ(k, k, q) ≤ Γ(k , q). �

The following result is immediate by [[1], Shi, Zhu, Solé, 2018,
DCC]. The proof is omitted.

Proposition 2

For all prime powers q, we have Γ(2, q) = 2.



The repetition code R(n, q) is the ideal of Fq[x ]/(xn − 1) with
generator xn−1

x−1 . Its dual is P(n, q) = 〈(x − 1)〉.

The Hamming code Hm is the binary cyclic code of length
n = 2m − 1 with generator any primitive irreducible polynomial of
F2[x ] of degree m. Its dual the simplex code Sm is a one-weight
code.

Theorem 9

For all integers n ≥ 1 and all prime powers q with (n, q) = 1, we
have that Γ(n, 1, q) = 1, and that Γ(n, n − 1, q) is the number of
nonzero weights in P(n, q). For all primes m ≥ 2, we have
Γ(n, n −m, 2) = n − 4, and Γ(n,m, 2) = 1, where n = 2m − 1.



The next two theorems rely on some deep algebraic geometric
enumeration of cyclic codes [7,8].

Theorem 10

For all integers m ≥ 3, we have Γ(2m − 1, 2m, 2) ≥ d2m/2e, and
Γ(2m + 1, 2m, 2) ≥ d2m/2e.

Proof. The dual of the binary Melas code is cyclic of parameters
[2m − 1, 2m]. It is proved in [[7, Th. 6.3]] that its nonzero weights
are all the even integers w in the range

|w − 2m − 1

2
| ≤ 2m/2.



Similarly, the dual of the Zetterberg code is an irreducible cyclic
code of parameters [2m + 1, 2m]. It is proved in [[7, Th. 6.6]] that
its nonzero weights are all the even integers w in the range

|w − 2m + 1

2
| ≤ 2m/2.

The result follows after elementary calculations. �

[7] G. Lachaud, J. Wolfmann, The weights of the orthogonals of
the extended quadratic binary Goppa codes, IEEE Trans. on
Information Theory 36, (1990) 686–692.



Theorem 11

For all integers m ≥ 2 we have Γ(3m − 1, 2m, 3) ≥ d4× 3
m−2
2 e.

Proof. The dual of the ternary Melas code is cyclic of parameters
[3m − 1, 3m]. It is proved in [8] that its nonzero weights are of the
form 3m−1+t

3 with t ∈ Z, satisfying t ≡ 1 (mod 3), and t2 < 3m.
The result follows after elementary calculations.
It is remarkable that the last two theorems imply lower bounds on
Γ(k , 2) and Γ(k, 3) that are exponential in the dimension. It would
be desirable to extend these results to Γ(k , q) with q a prime
power > 3. �

[8] G. Van der Geer, M. van der Vlugt, Artin ?Schreier curves and
codes, J. Algebra 139 (1991), 256–272.



4.2 Covering radius

Recall that the covering radius ρ(C ) of a code C is the smallest
integer t such that every point in Fn

q is at distance at most t from
some codeword of C . A combinatorial function that is, as far as we
know, new, is T [n, k, q], the largest covering radius of a cyclic
code of length n and dimension k over Fq. Note that the closest
classical function in that context is, for q = 2, the quantity t[n, k],
the smallest covering radius of a binary linear code of length n and
dimension k. Trivially t[n, k] ≤ T [n, k, 2]. The Delsarte bound [9],
stated for the dual of a linear code C , is ρ(C⊥) ≤ s(C ) [9][Chap.
6, Th. 21].



With the above definitions, we can state the following result.

Proposition 3

For all integers n, k with 1 ≤ k ≤ n, we have

Γ(n, k , q) ≥ T [n, n − k , q].

Proof. Upon using Delsarte bound for the dual of an [n, k]q code
with Γ(n, k , q) nonzero weights, which is, in particular, an
[n, n − k]q code we see that Γ(n, k, q) ≥ T [n, n − k, q]. �

[9] F.J. MacWilliams, N.J.A. Sloane, The theory of error correcting
codes, North Holland, Amsterdam (1977).



5 Asymptotics

The q-ary entropy function Hq(·) is defined for 0 < y < q−1
q by

Hq(y) = y logq(q − 1)− y logq(y)− (1− y) logq(1− y).

To consider the number of weights of long codes of given rate, we
study the behavior of γq(R) defined for 0 < R < 1 as

γq(R) = lim sup
n→∞

Γ(n, bRnc, q).



Theorem 12

For all rates R ∈ (0, 1) we have H−1q (R) ≤ γq(R) ≤ R. In

particular, γq(R) ≤ t(q), the unique solution in (0, q−1q ) of the
equation Hq(x) = x .

Proof The upper bound comes from the immediate inequalities
Γ(n, k, q) ≤ Γ(k , q) ≤ qk − 1. The lower bound follows by
combining the sphere-covering bound [10] with Proposition 3. �

[10] G.D. Cohen, I. Honkala, S. Litsyn, A. Lobstein, Covering
codes, North-Holland, Amsterdam (1997).



Similarly for strongly cyclic codes we define

γ0q(R) = lim sup
n→∞

Γ0(n, bRnc, q).

We obtain a different upper bound.

Theorem 13

For all rates R ∈ (0, 1) we have H−1q (R) ≤ γ0q(R) ≤ R
2 . In

particular, γq(R) ≤ t0(q), the unique solution in (0, q−1q ) of the
equation Hq(x) = x

2 .



Main results

• Upper and lower bounds on the largest number of weights in a
cyclic code of given length, dimension and alphabet are given.

• An application to irreducible cyclic codes is considered.

• Sharper upper bounds are given for cyclic codes (called here
strongly cyclic), all codewords of which have period the length.

• Asymptotics are derived on the function Γ(k , q), the largest
number of nonzero weights a cyclic code of dimension k over Fq

can have.



Thanks for your attention !


