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Steiner triple systems (STS)

A Steiner triple system STS(v) is a finite set S of cardinality v
whose elements are called points, provided with a collection of
3-subsets called blocks such that every 2-subset of S is contained
in one and only one block. We assume that S = {1, . . . , v} and do
not distinguish a block b with its characteristic vectors, that is, the
v -tuple of 0s and 1s having 1s in the coordinates numbered by the
elements of b. E.g., (0, 1, 0, 1, 1, 0, 0) = {2, 4, 5} (v = 7).



p-rank of STS

The dimension of the space over GF(p) spanned by the blocks (to
be exact, by their characteristic vectors) of a Steiner triple system
T is called the p-rank of T . As shown in [1], the p-rank of every
STS(v) is v for all prime p except 2 and 3.
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A series of papers are devoted to the study of STS(v) of deficient
2-rank. In particular, in [2], [3], [4], there found formulas for the
number of STS(2m − 1) of 2-rank 2m −m, 2m −m + 1,
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In some recent papers, not only 2-rank, but also 3-rank of STS is
considered.
[5]
[6]
In [7], a formula for the number of STS orthogonal to a fixed
binary or ternary subspace was found.
In [8], we count the number of all STS(v) of a prescribed non-full
2- or 3-rank.
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Structure of orthogonal subspace, GF(3)

Let v ≡ 1, 3 mod 6; that is, there exist STS(v). By V v , we denote
the vector space of all v -tuples over GF(3). Denote by D the set
of subspaces of V v , each including the all-one vector and being
orthogonal to at least one STS(v); denote

Di = {D ∈ D : dim(D) = i + 1}.

Lemma (variant of [Doyen, Hubaut, Vandensavel, 1978])

Let M be a (i + 1)× v generator matrix for D ∈ Di , and let the
first row of M be the all-one vector. Then M consists of 3i

different columns, each occurring v/3i times.

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2

 .



Structure of orthogonal subspace. PROOF (begin)

Lemma

Let M be a (i + 1)× v generator matrix for D ∈ Di , and let the
first row of M be the all-one vector. Then M consists of 3i

different columns, each occurring v/3i times.

Without loss of generality, the 1st column is (1, 0, ..., 0)T.

(*) If a and b are columns of M, then −a− b is.

(**) If c, d are columns of M, then c + d − (1, 0, ..., 0)T is.

So, the set of columns of the matrix M ′ obtained from M by
removing the first row is closed under the addition. So, all
possible 3i columns occurs.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2

1 1 1
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Structure of orthogonal subspace. PROOF (end)

Lemma

Let M be a (i + 1)× v generator matrix for D ∈ Di , and let the
first row of M be the all-one vector. Then M consists of 3i

different columns, each occurring v/3i times.

It remains to prove that all groups are of the same size.

For given two different columns a and b, we fix an element
(position) corresponding to the column −a− b, and count the
number of triples.

. . . 1 1 1 1 1 1 1 . . . 1 1 1 1 1 1 1 . . . 1 1 1 1 1 1 1 . . .

. . . 0 0 0 0 0 0 0 . . . 1 1 1 1 1 1 1 . . . 2 2 2 2 2 2 2 . . .

. . . 2 2 2 2 2 2 2 . . . 1 1 1 1 1 1 1 . . . 0 0 0 0 0 0 0 . . .

1 1 1

The proof is over.
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The structure of non-full-3-rank STS

Lemma (variant of [Jungnickel and Tonchev, 2018+])

Given a subspace D from Dj , the set of STS(v) orthogonal to D is
in one-to-one correspondence with the collections of 3j Steiner
triple systems of order v/3j and 3j(3j − 1)/6 latin squares of order
v/3j .

For each of 3j groups, the triples with all 3 points in these
group form STS(v/3j).

. . . 1 1 1 1 1 1 1 . . .

. . . 0 0 0 0 0 0 0 . . .

. . . 2 2 2 2 2 2 2 . . .
1 1 1
1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1
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The structure of non-full-3-rank STS

Lemma (the structure of non-full-3-rank STS)

Given a subspace D from Dj , the set of STS(v) orthogonal to D is
in one-to-one correspondence with the collections of 3j Steiner
triple systems of order v/3j and 3j(3j − 1)/6 latin squares of order
v/3j .

For every 3 distinct groups {α1, . . . , αv/3j}, {β1, . . . , βv/3j},
{γ1, . . . , γv/3j} corresponding to columns a, b, c with
a + b + c = 0, the triples with one point in each of these 3
groups have the form {αx , βy , γf (x ,y)} for some latin square f

of order v/3j .

. . . 1 1 1 1 1 1 1 . . . 1 1 1 1 1 1 1 . . . 1 1 1 1 1 1 1 . . .

. . . 0 0 0 0 0 0 0 . . . 1 1 1 1 1 1 1 . . . 2 2 2 2 2 2 2 . . .

. . . 2 2 2 2 2 2 2 . . . 1 1 1 1 1 1 1 . . . 0 0 0 0 0 0 0 . . .
1 1 1
1 1 1

1 1 1

0 1 2 3 4 5 6

2 3 4 5 6 0 1

5 6 0 1 2 3 4

6 0 1 2 3 4 5

3 4 5 6 0 1 2

4 5 6 0 1 2 3

1 2 3 4 5 6 0



The number of STS with prescribed orthogonal space

Corollary

Given a subspace D from Dj , the number Φ(D) of STS(v)
orthogonal to D equals Φv ,j , where

Φv ,j = Ψ3j

v/3j Λ
3j (3j−1)/6
v/3j

,

Ψu is the number of STS(u), and Λu is the number of latin squares
of order u.



orthogonal → dual?

Denote by N(D) the number of STS whose dual is D.

Given a subspace D from Dj , we know the number of STS
which are orthogonal to D.

That is to say, we know
∑
D′⊃D

N(D).

How to find N(D)?
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the Transform

Fourier transform?

larva-nymph transform?

Möbius transform?

boson-fermion transform?



Möbius transform

Lemma

Assume that v is divided by 3k and k is the largest integer with
this property. Let i ∈ {0, . . . , k}, and let D be in Di . The number
of STS(v) with dual space D equals Υv ,i , where

Υv ,i =
k∑
j=i

Γv ,i ,jµ
(3)

j−iΦv ,j , (1)

where

every subspace from Di is contained in exactly Γv ,i ,j subspaces
from Dj ,

µ(q)

i = (−1)iq( i
2) (Möbius coefficients),

Φv ,j are from Corollary above



Main theorem, GF(3)

Theorem

Assume that v is divided by 3k and k is the largest integer with
this property. Let i ∈ {0, . . . , k}. The total number of different
STS(v) of 3-rank v − i − 1 equals

Γv ,0,i

k∑
j=i

Γv ,i ,jµ
(3)

j−iΦv ,j , where µ(3)

l = (−1)l3( l
2), Φv ,j = Ψ3j

v/3j Λ
3j (3j−1)/6
v/3j

,

Γv ,i ,j =
( v

3i
!
)3i /

3
(j+i+1)(j−i)

2

( v

3j
!
)3j j−i∏

s=1

(3s − 1),

Ψu is the number of STS(u) (and also the number of idempotent
totally symmetric latin squares of order u), and Λu is the number
of latin squares of order u.



one of partial cases: 3-rank +2

Corollary

The number of STS(v), v = 3k , of 3-rank v − k + 1 is

v !

2k+2 · 3
k(k+1)

2
−1 · [k − 2]3!

×

(
(235 · 38 · 52 · 72 · 5231 · 3824477)

v(v−9)
486

24v/9−4 · 3v/3−2k+1

− 2v
2/27−4v/9+3 · 3v2/54−7v/18+k−1 + 1

)
.



Now, consider 2-rank (over GF(2))



Structure of orthogonal subspace, GF(2)

Let w + 1 ≡ 1, 3 mod 6; that is, there exist STS(w + 1). By
V w+1, we denote the vector space of all (w + 1)-tuples over
GF(2). Denote by D the set of subspaces of V w+1 orthogonal to
at least one STS(v); denote

Di = {D ∈ D : dim(D) = i}.

Lemma (variant of [Doyen, Hubaut, Vandensavel, 1978])

Let M be a i × (w − 1) generator matrix for D ∈ Ḋi . Then each of
the 2i − 1 nonzero columns of height i occurs w/2i times as a
column of M, while the all-zero column occurs w/2i − 1 times.

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

 .



Structure of orthogonal subspace, PROOF, GF(2)

(*) If a and b are different nonzero columns of M, then a + b
is also a column of M. The proof is similar to the ternary case.

Since the rank of M is i , it contains i linearly independent
columns. It follows from (*) that it contains all 2i − 1
different nonzero columns of height i .

It remains to show that the all-zero column occurs one less
times than every other column.

. . . 0 0 0 0 0 0 0 . . . 1 1 1 1 1 1 1 1 . . .

. . . 0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0 0 . . .

. . . 0 0 0 0 0 0 0 . . . 1 1 1 1 1 1 1 1 . . .

1 1 1
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The structure of non-full-2-rank STS

Lemma (variant of [Jungnickel and Tonchev, 2018+])

Given a subspace D from Ḋj , the set of STS(w − 1) orthogonal to
D is in one-to-one correspondence with the collections of one
STS(w/2j − 1), 2j − 1 symmetric latin squares of order w/2j − 1,
and (2j − 1)(2j − 2)/6 latin squares of order w/2j .

triples with 3 ones in the “all-zero-column group” form to
STS(w/2j − 1);

for different columns a, b, c with a + b + c = 0 we have a
latin square (similarly to the 3-ary case);

for non-zero column a the triples with two points in the
corresponding group of coordinates and one point in the
“all-zero group” form a symmetric square of order w/2j .
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The structure of non-full-2-rank STS

Lemma (variant of [Jungnickel and Tonchev, 2018+])

Given a subspace D from Ḋj , the set of STS(w − 1) orthogonal to
D is in one-to-one correspondence with the collections of one
STS(w/2j − 1), 2j − 1 symmetric latin squares of order w/2j − 1,
and (2j − 1)(2j − 2)/6 latin squares of order w/2j .

triples with 3 ones in the “all-zero-column group” form to
STS(w/2j − 1);

for different columns a, b, c with a + b + c = 0 we have a
latin square (similarly to the 3-ary case);

for non-zero column a the triples with two points in the
corresponding group of coordinates and one point in the
“all-zero group” form a symmetric square of order w/2j .



Symmetric latin squares

for non-zero columns a the triples with two points in the
corresponding group of coordinates and one point in the “all-zero
group” form a symmetric square of order w/2j .

0 0 0 0 0 0 0 . . . 1 1 1 1 1 1 1 1 . . .
0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 . . . 1 1 1 1 1 1 1 1 . . .

1 1 1

4 1 3 2
1 4 2 3
3 2 4 1
2 3 1 4

←→
2 1 3
1 3 2
3 2 1

Remark. Symmetric latin squares of order 2u − 1 are in 1-to-1
correspondence with the (ordered) factorizations of the complete
graph of order 2n.



The rest of technique is the same as in the case of GF(3).



Main theorem, GF(2)

Theorem

Assume that w is divided by 2k and k is the largest integer with
this property. Let i ∈ {0, . . . , k}. The total number of different
STS(w − 1) of 2-rank w − i − 1 equals

Γ̇w ,0,i

k∑
j=i

Γ̇w ,i ,jµ
(2)

j−i Φ̇w−1,j ,

where µ(2)

l = (−1)l2( l
2), Φ̇w−1,j = Ψw/2j−1Π2j−1

w/2j−1Λ
(2j−1)(2j−2)/6
w/2j

,

Ψu is the number of STS(u) (and also the number of idempotent
totally symmetric latin squares of order u), Πu is the number of
symmetric latin squares of order u (and also u! times the number
of 1-factorizations of the complete graph of order u + 1), Λu is the
number of latin squares of order u, and

Γ̇w ,i ,j =
(w

2i
!
)2i /

2
(j−i)(j+i+1)

2

(w

2j
!
)2j j−i∏

s=1

(2s − 1).



Partial cases, 2-rank +1 and +2

Corollary ([Tonchev 2001])

The number of STS(w − 1), w = 2k , of 2-rank w − k is

w !(2w
2/24−3w/4+k+1/3 − 1)

/
2

k(k+1)
2 [k − 1]2!

Corollary ([Zinoviev–Zinoviev 2013])

The number of STS(w − 1), w = 2k , of 2-rank w − k + 1 is

w !
(

3w
2/48−w/4+2/3 · 2w2/16−5w/4+2k−1 − 3 · 2w2/24−3w/4+k−2/3 + 1

)
3 · 2

(k+2)(k−1)
2 · [k − 2]2!



Partial cases, 2-rank +3 and minimal for w = 10 · 2k

Corollary ([Zinoviev 2016])

The number of STS(w − 1), w = 2k , of 2-rank w − k + 2 is

2k !

21 · 2
k(k+1)

2
−3 · [k − 3]2!

×
(

780w/8−1 · (228 · 35 · 52 · 72 · 1361291)w
2/384−w/16+1/3 · 23k−12

−7·2w2/16−5w/4+2k−3·3w2/48−w/4+2/3+7·2w2/24−3w/4−5/3+k−1
)

Corollary

The number of STS(10w − 1), w = 2k , of 2-rank 10w − 1− k is

(10w)! · 122556672w−1 · (243 · 310 · 54 · 72 · 31 · 37 · 547135293937)
(w−1)(w−2)

6

2
k(k+1)

2
+5 · 135 · [k]2!

.



non-maximal 2-rank and 3-rank together?

Theorem

There is no a Steiner triple system of order v larger than 3 that is
both non-full-2-rank and non-full-3-rank, i.e., of 2-rank less than v
and 3-rank less than v − 1.

Assume that S an a STS(v), v > 3, which is
(i) of 3-rank at most v − 2 and
(ii) 2-rank at most v − 1, v > 3.
By Lemma, (i) means that there is a vector with v/3 zeros, v/3
ones, and v/3 twos that is orthogonal to S over GF(3); in
particular, v ≡ 0 mod 3. Assumption (ii) means that S has a
Steiner subsystem S ′ of order (v − 1)/2, by Lemma. Since v > 3
implies (v − 1)/2 > v/3, the system S ′ is orthogonal over GF(3)
to a vector that is not all-0, all-1, or all-2. By Lemma 1, the order
(v − 1)/2 is an integer divisible by 3, and we get v ≡ 1 mod 3, a
contradiction.



THANK YOU !!!


