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Introduction

A quadratic polynomial over a field F means
a1x? + axy? + azz® + asxy + asxz + agyz,
wherea;e F,i=1,...,6.

A conic means the zero set of a quadratic polynomial which is
absolutely irreducible (i.e., irreducible over the algebraic closure
of the ground field F).

On the projcective plane over F, any two conics are projectively
equivalent to each other, i.e., there is a projective
transformation between them.



Relative position of a line and a conic

Relative position of a line and a circle
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Relative position of two conics (over the algebraic closure)
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[Fq, the finite field with g elements

P2, the projective plane over the algebraic closure of Fq

For an algebraic set (the zero set of polynomials) X in P?,
X(Fg) :={(a, B,7) € X | o, B,y € Fyq}, the set of ['4-points of X
Ng(X) := #X(Fq), the number of F4-points of X

For u,v,w € Fq, not all zero,
[u,v,w] := {(x,y,2) € P2 | ux + vy + wz = 0}, an F,-line.

0o := #P2(Fq) = g + g + 1, the number of F4-points on the
plane which is equal to that of F4-lines.



Preliminaries

@ Every Fg4-line contains g + 1 Fq-points.

@ There are exactly g + 1 Fq-lines through any Fg4-points,
whose union contains P?(F,).

@ Every conic contains g + 1 Fg4-points.

@ The number of Fy-points in the intersection of a line and a
conicis 0, 1, or 2. (Definition. A line ¢ is called a /-line of a
set Sif [(NS(Fq)| =1i.)

@ Fora conic C, |£o(C)| = 4%, |£4(C)| = g+ 1, and
|L2(C)| = @, where L;(C) means the set of i-lines of
C. (A 1-line means a tangent line.)

© For g > 4, every 5 points, any three of them are not
collinear, determine a unique conic.

@ Foreven g, all g + 1 tangent lines to a conic C pass
through the common point N, which is called the nucleus
of the conic C.



Conics with the common nucleus

From now on, we only consider for even g = 2.

We denote by C(ay, az, as, as, as, ag) the conic defined by the
quadratic equation

ar1x? + asy? + azz® + asxy + asxz + agyz = 0.

@ The nucleus of the conic C(ay, ap, as, a4, as, as) is
(as, as, as).

@ We may let the equation of a conic with nucleus (0,0, 1) is
aix® + apy? + a3z + xy = 0. (Here a3 # 0, since the
polynomial is absolutely irreducible.)

© The number of all conics with the common nucleus is
(g —1).

© The number of all conics on the projective plane over Fy is
P - .



Spectrum and Standard Equations

R. H. F. Denniston, R. Mathon and many researchers used
such conics to construct maximal arcs on the plane.

For a set S, we let s; := |£;(S)|, the number of i-lines of S. The
sequence {s;} is called the spectrum of S.

A set Sis called an (n, r)-arcif |S| = nand r = max{i | s; # 0}.
A set Siis called a maximal (n, r)-arcif s;=0forany 0 <i < r.

Standard equations for a set S

(1) ,q 0Si = q° + g + 1 (the number of all lines on the plane).

2) Y1 oi-si=(g°—q+1)-(g+1) (the sum of [¢N S| for all
lines on the plane).

(3) 39, (4)si = (¥ (counting the number of elements in
the set {({P,Q},PQ) | P,Q € Sand P # Q} in two ways).



Zeros of a quadratic equation

We use the trace function Tr : Fq — Fo = {0, 1} defined by
Tr(X) =X+ X+ x* 4 -+ X2,

Lemma.

(1) The quadratic equation t? +t + 6 = 0 over F, has a solution
in IFq if and only if 7r(d) = 0. In this case, it has 2 distinct
solutions f and 1 + f, where
ty = k62 + (k + k2)6* + - + (k + k2 + - - - + ki )62 for an
element k € Fy with Tr(k) = 1.

(2) In general, an equation at? + bt + ¢ = 0 with
a(# 0), b(# 0), ¢ € F4 has a solution (actually 2 distinct
zeros) in Fq if and only if Tr(£3) = 0.

(3) An equation at? + bt + ¢ = 0 with a(# 0), b, c € F, has a
double zero in Fq if and only if b = 0.



Intersection of two conics with the common nucleus

We consider a family of g?(q — 1) conics with the common
nucleus N(0,0,1)

ax® + by? + \z2% + xy =0 with a,b,\ € Fg, A #0,
which we denote by F,,, simply.

Lemma. Let F ) and F4 v be two distinct conics.
(1) If X =X, then they have one common Fg-point of
intersection multiplicity 4.

(2) Let A # . If 7'r((ax+?;ﬁz(;f)*2/+b“)) — 0, then they have two
common F4-points of intersection multiplicity 2,
respectrively. If Tr(EXFINONFON Y _ o then they have no

_ V)2
common Fg4-points.




Sum of two conics

For two conics Fapy and Fa s With X # X, we define another
conic as

Fabr ® Fapy = Fa@a’,b@b’,)@)«;

__axta _ bAb' N _
where a® @ = eV ,bob = peny SADN =X+

Lemma.

(1) If Fapx and Fypry with X # X have no common Fg-points,
then Fapy @ Fzpn has no common Fg-points with both of
them.

(2) If Fapx and Fypry with A # X have two common F4-points,
then Fapy @ Fy v contains those two common Fg-points.



Known Results of Denniston and Mathon

Theorem (Denniston, 1969) Let

o(x,y) = ax® + hxy + by? € Fqx, y] be irreducible over Fy. Let
H be an additive subgroup of F of order r. Then the set
{(x,y,2) | o(x,y) € H}isan ((r—1)(g+ 1) + 1, r)-arc, which
is maximal.

Theorem (Mathon, 2002) Let Tr(ab) = 1. Let H be an additive
subgroup of Fq of order r. Then the set Sy = UyepnFapy is an
((r—1)(g+ 1)+ 1,r)-arc, which is maximal.

Theorem (Mathon, 2002) Let p(\) = 329" ;2" and

g(\) = 39 b2~ be polynomials with coefficients in Fam.
For an additive subgroup A of order 29 in Fom let

F = {Fp g | A € A} be the set of conics with a common
nucleus Fy. If Tr(p(A\)g()\)) = 1 for every A\ € A then the set of
points on all conics in F together with Fy form a maximal
2m+d _om 4 2d 2d).arc K in P?(Fam). If both p(\), g()) are of
degree < 1in X then K is a Denniston maximal arc.



Some Notations

We consider more family of conics or lines related to such
conics.

To determine disjointness of two conics Fpy, Fap v With X # X
or that of a conic F) and a line [u, v, w] with w # 0, we define
the notations.

(aXN + a\)(bN + b))
(A +N)?

DCC(Fab/\’ Fa/b’/\') =

aw? 4+ \u?)(bw? + Av?)

DLC([u, v, W], Fasn) = L

Note that a line [u, v, 0] pass through the nucleus N(0,0, 1), so
it is tangent to every conic F . Also note that if A = )\, then
Fabx and Fyy meet at a Fg-point of intersection multiplicity 4.



Union of disjoint conics with the common nucleus

Theorem. Let A\, A\, X2 € Fg \ {0} and A\ # Ao.

) DCC(Fabr» Fasbone) = DCC(Fa b, (a0)s Fasba(ao))-
(2) CC(Fa b2 Faybyr,) + DCC(Fa b, 5, Faybyr,) = @1by +aobo.
(3) C( ajbi o a2b2/\2) DCC(Fb1a1>\1an2a2/\2)-
(4) LC([U’ v, W]7 FabA) - DLC([Vv u, W], FbaA)'

Corollary.

(1) Let 77'(81 b1) = 7'r(a2b2). Then Fa1b1>\1 N Fazbz)\z = if and
only if Fa1b1>\2 N Fa2b2>\1 =0

(2) Let Tr(a1 b1) 73 77’(a2b2). Then Fa1b1>\1 N Fazbz)\z = (if and
only if Fa,px, N Faybyn, 7 0



Automorphisms fixing N(1,0,0)

Let M € PGL(3, q) and ¢ be an automorphism determined by
the matrix M. We consider the automorphisms fixing the
nucleus N(0,0, 1) hence it preserves the family of conics with
nucleus N.

{M e PGL(Sv q) | ¢M(0>Ov 1) = (070’ 1)} =

{ ci1 Ci2 O

Co1 Co2 0] | C11Co2 + C12C21 # 0}- For
M =

C31 Czp 1
Ci1 Ci2 0]
Co1 G 0], let ¢ = ¢y and
C3t Cz2 1
d= det(M) = C11Co2 + C12C21 # 0. Then
d(x,y,2) = (C11X + Ci2y, Co1 X + C22Y, C31 X + C32 + 2).
o([u, v,w]) = [V, V', w'], where
U = d~1(CooU + Co1V + (C21Caz + C22C31) W)
Vi '=d 1 (crou+ ¢11V + (C11C32 + C12C31)W)
w=w




Automorphisms fixing N(1,0,0)

&(Fapy) = Fapn Where
a = d~'(ac, + bc3, + A(Cz1Ca2 + C2aC31)2 + C22C1)
b = d~"(ac, + bct; + A(C11032 + Cr20s1)? + Cr2Ci1)
N =dA\
¢~ = ¢uy-1 where
Co2 Ci2 0
M~ =d™ Ca1 Ct1 0
C21C32 + C2C31  C11C3p + C12C31  d

o({(x,y,2) [ f(x,y,2) = 0}) = {é(x, ¥, 2) | (X, y,2) = O}
={(x.y".2) [ f(¢7"(x,y'.2)) = 0}

/ ! / !
— (X, y.,2) | f(szx 2012}’ 7 Co1 X ;Cﬁy?

C>1C: CooC31)X" + (Cq1C C12C31)Y’
(Co1C32 + C22C31) ;(11 32 + C12C31)Y +7) =0}




Examples of automorphism groups

Aut(Foo1) = {M € PGL(3,q) | #m(Foo1) = Foo1} =

C11 Ci2 0
Co1 Co O |ciiCn+Ci201 =1 .

VC11C21  /C12C2 1
Note that v/a = a2.

Let € € Fg such that Tr(e) = 1.
Aut(Fi1) = {M € PGL(3,q) | dm(F1c1) = F1a1} =
0

C11 Ci2
Ce1 Co2 Ol | cr1coe + cracor = 1 .

\/1 + C11Coq -i-C121 +EC§1 \/6-"- C12C22 +C122 +€C§2 1

2 2
(o) = Aut(Fr)| = {T= T =9

= (the number of ordered triples of distinct points on a conic).

=(g+1)a(g—-1)




The set of all 0-lines of a conic

Fix an element e € Fq such that Tr(e) = 1.

Lo(F1e1) = {[u, v, w] | [u, v, w] is a O-line of Fi.1}
={[u,v,w] | (u,v,w) € U cr-10)Fetp}
= (U/,LE-I_I'_1(O)F€1M)*7
where S* = {[u,v,w] | (u,v,w) € S}.
Fe0 ={(0,0, 1)} means the nucleus and the g — 1 conics in
{Fa, | p € Tr1(0)\ {0}} are mutually disjoint and
U,.e77-1(0) Fet, forms a maximal (2 A1) 9),-arc.
Lo(F1e1) is invariant under automorphlsms of the conic Fy.1,
and itself is a Aut(F1.1)-orbit. Indeed, for any line ¢y € Lo(Fic1),

the order of Stab,,(Aut(Fi.1)) is 2(g + 1) and

|A2u(t((7i1151))| — 99 — Lo (Frar)l-

Thu_s K= UHG_T,_1(0)F€1M is expressed as a unio_n of § —1
conics and their common nucleus N’ for any point N’ € K.




The set of all 0-lines of a conic Fapy

Case 1. Tr(ab) = 1.
£0(Fab)\) = {[U7 v, W] ’ (U, v, W) S UpG%Tr*%O)FbaN}
= (Upe17-1(0)Foan)™
Fap0 = {(0,0, 1)} means the nucleus and the g — 1 conics in
{Fbau | p € Tr=1(0) \ {0}} are mutually disjoint and
K1 = Uyer-1(0)Fay forms a maximal (9%, 9 -arc.

Case 2. Tr(ab) = 0.

EO(FabA) = {[U7 v, W] ’ w 7& 0, (U, v, W) € UME%T,-—1(1)Fba,u}
= (e 7101y Fan \ Foa0)™-

Th_e Z conics in {Fpg, | 4 € XTr—(1)} contain two common

points Foao = {P1, P2} and Ko = U, ¢ 1 7-1(1)Fbau \ {P1. P2}

forms a maximal (%%-1 9 -arc.

Since any two conics are projectively equivalent to each other,
Ko and K¢ are also projectively equivalent.



Common 0-lines of conics

Let H be a subspace of F; over F» with g = 2.
Let H- = {x € Fq | Tr(Ax) = 0 for all A € H}.
Then dimg, H + dimg, H = dimg, Fqg = m.

If Tr(ab) =1 then £O(U)\€HFabA) = (UMEHJ_ Fba,u)*a where
S* =A{[u,v,w] | (u,v,w) € S}.

In general, if J is a subset of Fg, then
Lo(UneyFava) = Lo(Uxe(y) Favbn), where (J) means the
subspace spanned by J.



The set of conics disjoint from a line

Consider two projections 71 and mo from the set

H ={(C,¢) | Cisaconicand Cn¢ = (} to the set of conics
and the set of lines, respectively.

Then |7~ 1(C)| = |£o(C)| = %41

and -

| =(a° - ¢°) 7% s
—1 _ M d(g-

Hence‘w2 (f)‘_q2+q+1_ .

We can count by another way.

Note that F 4, N [0,0,1] = (0 if and only if Tr(ab) = 1. Thus
[{Fabx | Fapx N[0,0,1] = 0}| = (g — 1) - § and the number of
points outside the line [0,0, 1] is g%, we also get the number of
conics disjoint from a line is %",



The set of conics F_p) disjoint from Fgp1

Since DCC(Fyo1, Fapy) = ﬁ, we have

b
{Fabx | Foo1 N Fapx = 0} = {Fapy | 77((11)\)2) =1}

={Far | A#0,1and ab = (1 +>\)2uforsomeue 77,_1(1)}
= {Fan | A #0,1and (a,b,1+A) € Fog, with 11 € Tr'(1)}

Thus the number of conics Fzpy disjoint from Fqgq is
—1)(q—2
(q_z)_(Q+1_2).gZQ(q 2)(0 )



The set of all conics passing through through given i

points

Let m; (i > 1) be the number of conics passing given i points,
any three of which are noncollinear (if / > 3). By convention, we
let my be the number of all conics. Then we have the following.

mo = q° — ¢°.
my = q* — ¢°.
m; = q° — ¢°.
mg = (q— 1)
my=q-—2.
ms = 1.

m 1, if those i points are on a conic.
6= "= 1= .
a* 0, otherwise.



The set of all conics with given points on a conic G

Let Cy be a conic. We find the number of conics which have
exactly i/ points of Cy. For a given i points of Cy, let n; be the
number of conics C such that C N Cy is exactly the given points.
Then we obtain n;’s as follows.

Nns =---=ng=0.
ng=my—1=q-3.

= $(g—1)(2¢® +5¢°> — 69 + 6).

1 1
(1) (%5 ) () (T2 e

=3q-(3¢2 —gq+2)(g-1)2



The set of all conics C with |[CN Cy| =i

Let N; be the number of conics C such that |C N Cy| = i. Then
we obtain the following.

No=no=gq-(3g° —q+2)(g— 1)
1
M= (777) m = da+ (g 12" + 562 - 6q +6).

&
I

L

(q?)-nz 1(q+1)a(q° —2¢* + 79 - 8).
N3:<q;1>-n3 2(9+1)a(q—1)(a-2).
Ne= (957) me = i@+ Nata - g -2)a-9)

Ns = =Ny =0.

Nl

Remark. The number of conics disjoint from a given conic is
No=3q-(39° —q+2)(q—1)>2
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Thank you for your attention!!!




