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The amount of transmission in wireless network

Video-on-demand drives wireless traffic growth

The available bandwidth is finite

———————————————————————————–
[1] Cisco Visual Networking Index, Global Mobile Data Traffic Forecast Update,

2014-2019, White Paper, 2015.
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Caching system

Placement Phase

parts of each file is partially cached at each user
without the knowledge of user’s demands

Delivery Phase

Assume that user k requests the dkth file. Denote all the
request file numbers by d = (d0, d1, . . . , dK−1).
Server sends Rd files to users such that each user decodes its
requested file with help its cached contents.

R = max
{
Rd | ∀d ∈ [0,N)K

}
.

R is always called the rate of a coded caching scheme.

Objective 1: R is as small as possible.
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MN scheme

In 2014, Ali and Niesen proposed that

coded caching scheme can be used to further reduce R.

The rate of MN scheme is ordered optimal

It is widely used in heterogeneous wireless network, such as
D2D, hierarchical network and so on.

Best paper award of IEEE IT

Cited by 680 times

———————————————————————————–
[2] M. A. Maddah-Ali and U. Niesen, IEEE Trans. Inf. Theory, 60(5), (2014).
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The second objective

Disadvantage: MN scheme is unfeasible when K is large.

Objective 2: F is as small as possible for the fixed R.

———————————————————————————–
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Combinatorial method

Table: Previously known constructions

results M/N R F

MN scheme 1
q

K(q−1)
q+K ∼ q√

2πK(q−1)
· e

K
q

(
ln q+(q−1) ln q

q−1

)

The scheme 1
q q − 1 e(

K
q
−1) ln q

———————————————————————————–
[3] Q. Yan, M. Cheng, X. Tang, and Q. Chen, IEEE Trans. Inform. Theory,

63(9), 2017.



Background Coded caching scheme Linear construction

Linear characterization

Placement phase:

User k caches

Zk = {φk(Wn) | n ∈ [0,N)}

where φk(x) (caching function) has the size of FM
N packets.

Delivery phase:

Given a request d = (d0, d1, · · · , dK−1), sever sends

Xd = ψ0(Wd0) + ψ1(Wd1) + . . .+ ψK−1(WdK−1)

to users where ψk(coding function) has the size of RF
packets.
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Linear characterization

User k obtains
W ′

dk
= χk(Xd)

where χk(decoding function) has the size of F (1− M
N )

packets.

Our goal: Wdk can be obtained by φk(Wdk ) and W ′
dk

.
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Linear characterization

Placement phase: User k caches

Zk = {SkWn | n ∈ [0,N)}

where Si (caching matrix) is an FM
N × F matrix.

Delivery phase: Given a request d = (d0, d1, · · · , dK−1), sever
sends

Xd = A0Wd0 + A1Wd1 + . . .+ AK−1WdK−1

to users where Ak(coding matrix) is a RF × F matrix.
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= S′kXd

where S′k(decoding matrix) is an F (1− M
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Linear characterization

Theorem

For any request d and the related signals Xd, user k can obtain
the required Wdk if and only if the matrices satisfy the following
conditions.

rank

(
Sk

S′kAk ′

)
=

{
F , if k = k ′

FM/N, otherwise
(1)

for all 0 ≤ k ′ < K .

Remark

Formula (1) is exactly one condition of an minimum
storage regenerating code
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Regenerating codes

Minimum storage regenerating (MSR) code was introduced in
[4] for distributed storage systems.

Assume that a file of size M = kα denoted by the column
vector W ∈ Fkα

p is partitioned in k parts

W = {W0,W1, · · · ,Wk−1}

each of size α, where p is a primepower.

We encode W using an (n = k + r , k) MDS code and store it
across k systematic and r parity storage nodes.

———————————————————————————–
[4] A. G. Dimakis et al., IEEE Trans. Inf. Theory, 56(9): 4539-551, 2010.
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Regenerating codes

Theorem

If an (n = K + r ,K ) MSR code has optimal repairing
bandwidth, then a (K ,M,N) caching scheme with

F = α
M

N
=

1

r
R = r − 1

can be obtained.
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New constructions

(1) holds if and only if the following formula holds.{
S′kAk ′ ⊆ Sk if k 6= k ′

Sk + S′kAk ′ = FF
2 if k = k ′

k, k ′ ∈ [1,K )

Here the sum of two subspace U , V of FF is defined as

U + V = {u + v | u ∈ U , v ∈ V}.
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Notations

Given an integer s ∈ [0, qm) where m ∈ N+, with

s =
m−1∑
l=0

slq
l

for integers sl ∈ [0, q), we refer to

s = (sm−1, · · · , s0)q

as the q-ary representation of s.

For each integer s let

es = (0, 0, . . . , 0, 1, 0, . . . , 0)

be a qm length vector where the sth entry is 1 and other
entries are 0.
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Notations

There are m partitions of [0, qm), i.e., for u = 0, 1, · · · ,m− 1,

Vu,v = {(sn−1, · · · , s0)q | su = v } , 0 ≤ v < q.

Example (q = 3, m = 2)

V0,0 = {(0, 0), (1, 0), (2, 0)} = {0, 3, 6}
V0,1 = {(0, 1), (1, 1), (2, 1)} = {1, 4, 7}
V0,2 = {(0, 2), (1, 2), (2, 2)} = {2, 5, 8}
V1,0 = {(0, 0), (0, 1), (0, 2)} = {0, 1, 2}
V1,1 = {(1, 0), (1, 1), (1, 2)} = {3, 4, 5}
V1,2 = {(2, 0), (2, 1), (2, 2)} = {6, 7, 8}



Background Coded caching scheme Linear construction

Notations

There are m partitions of [0, qm), i.e., for u = 0, 1, · · · ,m− 1,

Vu,v = {(sn−1, · · · , s0)q | su = v } , 0 ≤ v < q.

Example (q = 3, m = 2)

V0,0 = {(0, 0), (1, 0), (2, 0)} = {0, 3, 6}
V0,1 = {(0, 1), (1, 1), (2, 1)} = {1, 4, 7}
V0,2 = {(0, 2), (1, 2), (2, 2)} = {2, 5, 8}
V1,0 = {(0, 0), (0, 1), (0, 2)} = {0, 1, 2}
V1,1 = {(1, 0), (1, 1), (1, 2)} = {3, 4, 5}
V1,2 = {(2, 0), (2, 1), (2, 2)} = {6, 7, 8}



Background Coded caching scheme Linear construction

Notations

For each u and v , define

Eu,v = {es | s ∈ Vu,v}

and

Qu =

{
q−1∑
su=0

e(sm−1,··· ,s0)

∣∣∣ sj ∈ {0, 1}, j 6= u

}
where the sum is performed under modulo q.

Example (q = 3, m = 2)

E0,0 = {e0, e3, e6} E0,1 = {e1, e4, e7} E0,2 = {e2, e5, e8}
E1,0 = {e0, e1, e2} E1,1 = {e3, e4, e5} E1,2 = {e6, e7, e8}

Q0 = {e0 + e1 + e2, e3 + e4 + e5, e6 + e7 + e8},
Q1 = {e0 + e3 + e6, e1 + e4 + e7, e2 + e5 + e8}.
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Notations

φu,v (s) =

{
1 if s ∈ Vu,v
0 otherwise

ϕu,v (s) = (s0, . . . , su−1, v , su+1, . . . , sm−1).

Cu,v ,v ′ =


φu,v (0)eϕu,v′ (0)

φu,v (1)eϕu,v′ (1)

. . .
φu,v (qm − 1)eϕu,v′ (q

m−1)

+


φu,v ′(0)e0
φu,v ′(1)e1

. . .
φu,v ′(q

m − 1)eqm−1



Cu,q,v =


φu,v (0)e0
φu,v (1)e1

. . .
φu,v (qm − 1)eqm−1


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Notations

Example (q = 3, m = 2)

C0,0,1 =



e1
e1
0
e4
e4
0
e7
e7
0


,C0,0,2 =



e2
0
e2
e5
0
e5
e8
0
e8


,C0,1,0 =



e0
e0
0
e3
e3
0
e6
e6
0


,C1,1,2 =



0
e2
e2
0
e5
e5
0
e8
e8


,

C0,2,0 =
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e0
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e0
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e3
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0
e6
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e1
e1
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e4
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0
e7
e7
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e3
0
0
e6
0
0


,C0,3,1 =



0
e1
0
0
e4
0
0
e7
0


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Construction

Caching matrices

Su,v = Eu,v ,Su,q = Qu

Coding matrices:

Au,v =


Cu,v ,v0

Cu,v ,v1
...

Cu,v ,vq−1

 , vi ∈ [0, q) \ {v} and Au,q =


Cu,q,0

Cu,q,1
...

Cu,q,q−2


Decoding matrices

S′u,v =

 Eu,v . . . 0
...

. . .
...

0 . . . Eu,v


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New results

Table: Comparisons

results M/N R F

MN scheme 1
q

K(q−1)
q+K ∼ q√

2πK(q−1)
· e

K
q

(
ln q+(q−1) ln q

q−1

)

Known scheme 1
q q − 1 e(

K
q
−1) ln q

New Scheme 1
q q − 1 e

K
q+1

ln q
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New results

Theorem

For any positive integers q, z , m with q ≥ 2 and z < q,there
exists a coded caching scheme with parameters

K = m(q + 1)

⌊
q − 1

q − z

⌋
,

M

N
=

z

q
, R = q − z , F = qm.

The operation is over the finite filed F2.
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Conclusion and future work

We proposed a new viewpoint to study coded caching scheme
and constructed a new class of coded caching schemes over
F2.

For the fixed parameters K , M
N and R, could we further

reduce the value of F by increasing the size of filed?
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Over

Thank You!!!
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