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Systematic Authentication Codes

Systematic authentication codes

A systematic authentication code is defined as a four-tuple

(S, T ,K, {Ek : k ∈ K}),

where S is the source state, T is the tag space, K is the key space,
and Ek : S → T is called the encoding rule.

I The sender generates a tag t ∈ T for an information s ∈ S,
and sends out m = (s, t)

I The receiver gets m′ = (s′, t′) and check if t′ = Ek(s
′)

I if so, m′ is authentic
I otherwise, reject m′
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Construct systematic authentication codes

Security +

efficiency

I Error-correcting codes
I generic construction
I q-twisted construction
I rank distance codes

I Projective geometry

I Functions over Galois Rings

I . . .
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General Attacks

I Impersonation attack
A tag is guessed for a message s by an adversary, with
maximum success probability PI

I Substitution attack
A tag is guessed for a message s by an adversary, based on
some authentic message-tag pairs, with maximum success
probability PS

For systematic authentication codes

PS ≥ PI ≥
1

|T |
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Generic construction

A generic construction [Ding-Helleseth-Kløve-Wang]

Let C be an (n,M) code over an alphabet B where (B,+) is an
Abelian group with q elements.

We define a Cartesian
authentication code by

(S, T ,K, {Ek : k ∈ K}) = (ZM , B,Zn ×B, {Ek : k ∈ K}),

where for any k = (k1, k2) ∈ K and s ∈ S, the encoding rule is
defined by

Ek(s) = cs,k1 + k2,

and cs,k1 is the (k1 + 1)-th component of the codeword cs.

[Ding-Helleseth-Kløve-Wang] C. Ding, T. Helleseth, T. Kløve and X. Wang, A generic construction of Cartesian
authentication codes, IEEE Transactions on Information Theory, 2007.
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Generic construction

Proposition

Let C be an [n, κ, d] linear code over GF(q). Let (B,+)
= (GF(q),+), M = qκ.

The authentication code becomes

(S, T ,K, {Ek : k ∈ K}) = (Zqκ ,GF(q),Zn×GF(q), {Ek : k ∈ K}).

We have

PI =
1

q
, PS = max

06=c∈C
max

u∈GF(q)

N(c, u)

n
.

and
|S| = qκ, |T | = q, |K| = nq.

N(c, u) is the number of times that an element u occurs as a
coordinate in the codeword c
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Generic construction

Criteria for the linear codes we choose

I N(c, u) is crucial for the resistance against substitution
attacks

I To obtain N(c, u) is difficult in general

I Cyclic codes with only a few zeroes

We propose 3 classes of systematic authentication codes
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Cyclic codes with two zeroes

[q − 1, tm] cyclic code C(i1,...,it)
p← prime, m← positive integer, q = pm and π ∈ GF(q)←
primitive. Γj ← p-cyclotomic coset modulo q − 1 containing j.

{i1, ..., it|t ≥ 1 ∈ Zq−1} s.t. Γi1 , ...,Γit are pairwise disjoint with
size m.
Define cyclic code C(i1,...,it) with parity-check polynomial
h(x) = mi1(x)...mit(x), with mi(x) being the minimal polynomial
of π−i over GF(p).

Trace representation

C(i1,...,it) =


(

t∑
s=1

Tr(asx
is)

)
x∈GF(q)∗

| a1, ..., at ∈ GF(q)

 .

We use C(1,e) with two zeroes

11/37
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First class of authentication codes

Lemma ([Zhou-Ding])

Let m ≥ 3 be odd, p = 3 and e = 3(m+1)/2 − 1. Then, C(1,e) is a

[pm − 1, 2m]

cyclic code over GF(p) with three nonzero weights

(p− 1)pm−1 ± p− 1

2
p(m−1)/2, (p− 1)pm−1

[Zhou-Ding] Z. Zhou and C. Ding, Seven classes of three-weight cyclic codes, IEEE Transactions on
Communications, 2013.
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First class of authentication codes

Theorem

The authentication code constructed from code C(1,3(m+1)/2−1) is

(Z32m ,GF(3),Z3m−1 ×GF(3), {Ek : k ∈ K}),

with

PI =
1

3

and

PS =
3m−1 + 1

2(3(m−1)/2 + 3(m+1)/2)

3m − 1
.

In addition,

|S| = 32m, |T | = 3, |K| = 3m+1 − 3.

13/37
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Sketch of proof (1)

Let n = pm − 1 and h = (m+ 1)/2.

We have

N(c(a, b), u) =
1

p
[
∑

x∈GF(q)∗

∑
y∈GF(p)

ωy(Tr(ax+bx
3h−1)−u)]

=
1

p
[
∑

x∈GF(q)

∑
y∈GF(p)

ωy(Tr(ax+bx
3h−1)−u) −

∑
y∈GF(p)

ω−yu].

1. When u = 0

maxN(c(a, b), 0) = max(n− wt(c(a, b)))

= n− d = pm−1 +
p− 1

2
p(m−1)/2 − 1.

14/37
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Sketch of proof (2)

2. When u 6= 0

N(c(a, b), u) =
1

p
[
∑

x∈GF(q)

∑
y∈GF(p)

ωy(Tr(ax+bx
3h−1)−u)]

=
1

p
[q +

∑
x∈GF(q)

∑
y∈GF(p)∗

ωy(Tr(ax+bx
3h−1)−u)]

= pm−1 +
1

p

∑
y∈GF(p)∗

ω−yu
∑

x∈GF(q)

ωyTr(ax+bx
3h−1).

σ

Let R(a, b) =
∑

x∈GF(3m) ω
Tr(ax3

h+1+bx2). We have

T (a, b) :=
∑

x∈GF(3m)

ωTr(ax+bx3
h−1) =

1

2
(R(a, b) +R(−a, b)).

15/37
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Sketch of proof (3)

If u = 1

σ =
∑

y∈GF(3)∗

ω−y
∑

x∈GF(3m)

ωyTr(ax+bx
3h−1)

=
∑

y∈GF(3)∗

ω−yT (ya, yb)
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Sketch of proof (4)

Lemma

Let d = gcd(m, k) and let Q(a, b) = Trm/d(ax
pk+1 + bx2). For

j = 0, 1, 2, assume that the rank of Q(a, b) is s− j. Thus, the
possible values of

∑
x∈GF(q)

ωTrd/1Q(a,b) are

∑
x∈GF(q)

ωTrd/1Q(a,b) := vj =

{
εp(m+jd)/2, if m+ jd is even;

ε
√
pip−1p(m+jd−1)/2, if m+ jd is odd.

(1)
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Sketch of proof (4)

Lemma

Let R(a, b) =
∑

x∈GF(q) ω
Q(a,b). Define

N+
ε,j = {(a, b) ∈ GF(q)2|R(a, b) = εvj},

N−ε,j = {(a, b) ∈ GF(q)2|R(−a, b) = εvj}.

Assume that λ is a non-square of GF(p)∗. Then, the relation
between N+

ε,j and N−ε,j can be fully characterised.
For odd m ≥ 3 and {k ≥ 0| gcd(m, k) = 1},

{(R(a, b), R(−a, b))|a, b ∈ GF(q)}

takes the following possible values
(±v0,±v0), (±v0,±v1), (±v1,±v0),±(v0, v2),±(v2, v0), (p

m, pm).
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Sketch of proof (5)

With the Lemma, the possible values of σ can be predicted, and
we have

N(c(a, b),±1) =


3m−1,

3m−1 ± 3(m−1)/2,

3m−1 ± 1
2(3(m+1)/2 + 3(m−1)/2).

Therefore, the maximum can be obtained by

maxN(c(a, b), u) = 3m−1 +
1

2
(3(m−1)/2 + 3(m+1)/2).

We have

PS =
3m−1 + 1

2(3(m−1)/2 + 3(m+1)/2)

3m − 1
.

19/37



Sketch of proof (5)

With the Lemma, the possible values of σ can be predicted, and
we have

N(c(a, b),±1) =


3m−1,

3m−1 ± 3(m−1)/2,

3m−1 ± 1
2(3(m+1)/2 + 3(m−1)/2).

Therefore, the maximum can be obtained by

maxN(c(a, b), u) = 3m−1 +
1

2
(3(m−1)/2 + 3(m+1)/2).

We have

PS =
3m−1 + 1

2(3(m−1)/2 + 3(m+1)/2)

3m − 1
.

19/37



Sketch of proof (5)

With the Lemma, the possible values of σ can be predicted, and
we have

N(c(a, b),±1) =


3m−1,

3m−1 ± 3(m−1)/2,

3m−1 ± 1
2(3(m+1)/2 + 3(m−1)/2).

Therefore, the maximum can be obtained by

maxN(c(a, b), u) = 3m−1 +
1

2
(3(m−1)/2 + 3(m+1)/2).

We have

PS =
3m−1 + 1

2(3(m−1)/2 + 3(m+1)/2)

3m − 1
.

19/37



Second class of authentication codes

Lemma

Let m be odd, p be a prime such that p ≡ 3 (mod 4), q = pm,

e = (pm + 1)/(pk + 1) + (pm − 1)/2

with k|m. Then, C(1,e) is a

[pm − 1, 2m]

cyclic code over GF(p) with three nonzero weights

pm − pm−1, (p− 1)(pm−1 ± 1

2
p(m+k)/2−1).

20/37



Second class of authentication codes

Theorem

The authentication code constructed from the code C(1,e) is

(Zp2m ,GF(p),Zpm−1 ×GF(p), {Ek : k ∈ K}),

with

PI =
1

p
, PS =


3
2
pm−1+ 1

2
p(m−1)/2

pm−1 , if m = k;
pm−1+ 1

2
p(m−1)/2+ 1

2
p(m+2k−1)/2

pm−1 , if m > k.

Furthermore, we have

|S| = p2m, |T | = p, |K| = (pm − 1)p.
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Sketch of proof (1)

N(c(a, b), u) =
1

p
[
∑

x∈GF(q)

∑
y∈GF(p)

ωy(Trm/1(ax+bx
e)−u)]

=
1

p
[q +

∑
x∈GF(q)

∑
y∈GF(p)∗

ωy(Trm/1(ax+bx
e)−u)]

= pm−1 +
1

p

∑
y∈GF(p)∗

ω−yu
∑

x∈GF(q)

ωyTrm/1(ax+bx
e).

S(ya, yb)
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Sketch of proof (2)

Lemma

m ≥ 2, k ∈ Z, d = gcd(m, k), s = m/d.

p← odd prime, q0 = pd, q = pm = qs0.

Q(a, b) = Trm/d(ax
pk+1 + bx2), rank(Q(a, b)) = s− j, j = 0, 1, 2.

Then∑
x∈GF(q)

ωTrd/1Q(a,b) =

{
εp(m+jd)/2, if m+ jd is even;

ε
√
pip−1p(m+jd−1)/2, if m+ jd is odd.

For any y ∈ GF(p)∗,∑
x∈GF(q)

ωyTrd/1Q(a,b) = η0(y
r)

∑
x∈GF(q)

ωTrd/1Q(a,b),

where r is the rank of the quadratic form Q(a, b), η0 is the
quadratic character.
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Sketch of proof (3)

Hence

S(ya, yb) =
1

2
(
∑

x∈GF(pm)

ωyTrk/1Q(a,b) +
∑

x∈GF(pm)

ωyTrk/1Q(−a,b))

=
1

2
(η0(y

r1)
∑

x∈GF(pm)

ωTrk/1Q(a,b)

+ η0(y
r2)

∑
x∈GF(pm)

ωTrk/1Q(−a,b)).

CASE A.1: r1 = r2 = s

S(ya, yb) = η0(y
s)ε
√
pip−1p(m−1)/2

= ±η0(ys)ipm/2,
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Sketch of proof (4)

As a result,∑
y∈GF(p)∗

ω−yuS(ya, yb) = ±ipm/2
∑

y∈GF(p)∗

ω−yuη0(y
s)

= ±ipm/2
∑

y∈GF(p)∗

ω−yuη0(y)

= ±ipm/2G(η0, χ̂−u)

= ±ipm/2η0(−u)(−1)(p+1)/2i(p
2+2p+5)/4p1/2

= ±p(m+1)/2η0(−u)(−1)(p+1)/2i(p
2+2p+5)/4

Thus, we have

maxN(c(a, b), u) = pm−1 + p(m−1)/2.
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Sketch of proof (5)

CASE A.2: r1 = s, r2 = s− 1

S(ya, yb) =
1

2
(η0(y

r1)
∑

x∈GF(pm)

ωTrk/1Q(a,b)

+ η0(y
r2)

∑
x∈GF(pm)

ωTrk/1Q(−a,b)).

=
1

2
(η0(y

s)ε
√
pip−1p(m−1)/2 + η0(y

s−1)εp(m+k)/2)

= ±1

2
(η0(y

s)i
√
pp(m−1)/2 ± η0(ys−1)p(m+k)/2)

= ±1

2
(η0(y)ipm/2 ± p(m+k)/2).

Similarly, we derive
∑

y∈GF(p)∗ ω
−yuS(ya, yb) and

maxN(c(a, b), u) = pm−1 +
1

2
(p(m−1)/2 + p(m+k−2)/2).
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Sketch of proof (6)

We omit the details of

I CASE A.3: r1 = s, r2 = s− 2

I CASE B: r1 ≤ r2
I CASE C: s = 1

To wrap up, we have

PS =


3
2
pm−1+ 1

2
p(m−1)/2

pm−1 , if m = k;
pm−1+ 1

2
p(m−1)/2+ 1

2
p(m+2k−1)/2

pm−1 , if m > k.
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Third class of authentication codes

Lemma

m, k ∈ Z+, d = gcd(m, k), s = m/d is odd, s ≥ 3.

p← odd prime, q = pm, q0 = pd.
The cyclic code C with parity check polynomial h1(x)h2(x), where
h1(x), h2(x) are the minimal polynomials of (−π)−1 and

π−(p
k+1)/2, has the parameter

[pm − 1, 2m, pm − pm−1 − p− 1

2
p(m+d−2)/2].

Trace representation:

c(a, b) =
(

Tr
(
a(−π)t + bπ(p

k+1)t/2
))q−2

t=0
.
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Third class of authentication codes

Theorem

The authentication code constructed is

(Zp2m ,GF(p),Zpm−1 ×GF(p), {Ek : k ∈ K}),

with

PI =
1

p
, PS =


pm−1+ 1

2
p(m−1)/2+ 1

2
p(m+2d−1)/2

pm−1 , if k/d is even;
pm−1+p(m+2d−1)/2

pm−1 , if k/d is odd.

Furthermore, we have

|S| = p2m, |T | = p, |K| = (pm − 1)p.

We omit the details of the proof
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Outline

Authentication codes

Systematic authentication codes based on error-correcting codes

Our constructions of systematic authentication codes

Comparison
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Comparison

I The proposed authentication codes C1, C2, C3

I Compare the parameters |S|, |T |, |K|, PI and PS
I PI and PS : as small as possible

I |S|, |T |, |K|: consider tradeoff
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Example 1

When p = 3:
|S(C1)| = |S(C2)|, |T (C1)| = |T (C2)|, |K(C1)| = |K(C2)|
PI(C1) = PI(C2)

PS(C1) =
3m−1 + 1

2(3(m−1)/2 + 3(m+1)/2)

3m − 1
,

PS(C2) =


3
2
pm−1+ 1

2
p(m−1)/2

pm−1 , if m = k;
pm−1+ 1

2
p(m−1)/2+ 1

2
p(m+2k−1)/2

pm−1 , if m > k.

I If k = 1 < m: PS(C1) = PS(C2)

I If m > k ≥ 2 or m = k > 3: PS(C1) < PS(C2)

I C1 is better than C2
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Example 2

|S(C2)| = |S(C3)|, |K(C2)| = |K(C3)|

When d = k in C3

PS(C2) =


3
2
pm−1+ 1

2
p(m−1)/2

pm−1 , if m = k;
pm−1+ 1

2
p(m−1)/2+ 1

2
p(m+2k−1)/2

pm−1 , if m > k.

PS(C3) =
pm−1 + p(m+2d−1)/2

pm − 1

We have
PS(C2) ≤ PS(C3)

Thus, under a special condition, C2 is better than C3.
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Example 3

C4: authentication code from [Ding-Helleseth-Kløve-Wang]

|S| = p2m, |T | = p, |K| = pm+1

PI =
1

p
, PS =

{
1
p + p−1

pm/2+1 , when m is even;
1
p + 1

p(m+1)/2 , when m is odd,

Compared with C2,

I same |S|, |T | and PI
I |K(C2)| < |K(C4)|
I PS(C2) ≥ PS(C4)

I Asymptotically, the difference between PS(C2) and PS(C4) is
negligible.

I tradeoff between the key length and PS
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Example 4

A similar example with Example 3 can be found as following

C5: authentication code from [Ding-Niederreiter]

When q = p ≥ 3, |S| = p2m, |T | = p, |K| = pm+1

PI =
1

p
, PS =

1

p
+

p− 1

p(m+2)/2

I same |S|, |T | and PI
I |K(C2)| < |K(C5)|
I tradeoff between the key length and PS

[Ding-Niederreiter] C. Ding and H. Niederreiter, Systematic authentication codes from highly nonlinear functions,
IEEE Transactions on Information Theory, 2004.

35/37



Example 4

A similar example with Example 3 can be found as following

C5: authentication code from [Ding-Niederreiter]

When q = p ≥ 3, |S| = p2m, |T | = p, |K| = pm+1

PI =
1

p
, PS =

1

p
+

p− 1

p(m+2)/2

I same |S|, |T | and PI
I |K(C2)| < |K(C5)|
I tradeoff between the key length and PS

[Ding-Niederreiter] C. Ding and H. Niederreiter, Systematic authentication codes from highly nonlinear functions,
IEEE Transactions on Information Theory, 2004.

35/37



Example 4

A similar example with Example 3 can be found as following

C5: authentication code from [Ding-Niederreiter]

When q = p ≥ 3, |S| = p2m, |T | = p, |K| = pm+1

PI =
1

p
, PS =

1

p
+

p− 1

p(m+2)/2

I same |S|, |T | and PI

I |K(C2)| < |K(C5)|
I tradeoff between the key length and PS

[Ding-Niederreiter] C. Ding and H. Niederreiter, Systematic authentication codes from highly nonlinear functions,
IEEE Transactions on Information Theory, 2004.

35/37



Example 4

A similar example with Example 3 can be found as following

C5: authentication code from [Ding-Niederreiter]

When q = p ≥ 3, |S| = p2m, |T | = p, |K| = pm+1

PI =
1

p
, PS =

1

p
+

p− 1

p(m+2)/2

I same |S|, |T | and PI
I |K(C2)| < |K(C5)|

I tradeoff between the key length and PS
[Ding-Niederreiter] C. Ding and H. Niederreiter, Systematic authentication codes from highly nonlinear functions,
IEEE Transactions on Information Theory, 2004.

35/37



Example 4

A similar example with Example 3 can be found as following

C5: authentication code from [Ding-Niederreiter]

When q = p ≥ 3, |S| = p2m, |T | = p, |K| = pm+1

PI =
1

p
, PS =

1

p
+

p− 1

p(m+2)/2

I same |S|, |T | and PI
I |K(C2)| < |K(C5)|
I tradeoff between the key length and PS

[Ding-Niederreiter] C. Ding and H. Niederreiter, Systematic authentication codes from highly nonlinear functions,
IEEE Transactions on Information Theory, 2004.

35/37



Conclusion

I Systematic authentication codes can be constructed from
cyclic codes with only a few zeroes

I New authentication codes proposed based on cyclic codes
with two zeroes

I Detailed analysis of the maximum success probability PS
I Comparison and tradeoffs of their parameters
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Thank you for your attention!
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