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@ Background and Preliminaries



PP and CPP

@ [, is the finite field with g elements where g is a prime power.

e A polynomial f(x) over [Fyq is called a permutation polynomial (PP) if
the induced polynomial function f: ¢+ f(c) from Fy to itself
permutes [F.

e A polynomial f(x) over g is called a complete permutation
polynomial (CPP) if both f(x) and f(x) + x are permutations of Fg.



Example for PP and CPP

0 0 0 0
1 1 1 1
w w w w
W2 W2 W2 W2
f(x) = wx f(x) + x = w?x

o f(x) is a linear CPP of Fy.



A brief history of CPPs

@ CPPs of groups were introduced by Mann [Ann. Math. Stat. 1942];

@ A detailed study of CPPs of finite fields was initially carried out by
Niederreiter and Robinson [J. Aust. Math. Soc. A, 1982];

@ The reduced degree of complete mapping of finite fields with even
characteristic was studied by Wan [J. Aust. Math. Soc. A, 1986];



A brief history of CPPs

@ Mullen and Niederreiter proved that a Dickson polynomial can be a
complete mapping only in some special cases [Cana. Math. Bull.
1987];

e CPPs over F16 were given in [Yuan-Tong-Zhang, LNCS, 2007];

@ Monomial CPPs of type ax 5+ were investigated in [Laigle-Chapuy,
FFA, 2007; Sarkar-Bhattacharya-Cesmelioglu, LNCS, 2012];



A brief history of CPPs

@ By using the technique of polar coordinate representation, monomial
CPPs and trinomial CPPs of Fan were given in [Tu-Zeng-Hu, FFA,
2014];

@ The constructions and proof methods of the above paper triggered a
series of investigations on sparse CPPs [Wu-Li-Helleseth-Zhang, FFA,
2014; Xu-Cao, FFA, 2015; Wu-Lin, Discret. Appl. Math. 2015;
Bartolia-Giulietti-Zinib, FFA, 2016- - - |;

o CPPs were generated by recursive methods in [Muratovic-Pasalic,
FFA, 2014; Zha-Hu-Cao, FFA, 2015]



The applications of CPPs in cryptography

CPPs have been widely used in cryptography. For examples:

@ in the design of nonlinear dynamic substitution device [Mittenthal,
Adv.Appl.Math. 1995];

@ in the design of Hash functions [Schnorr-Vaudenay, Advances in
Cryptology-Eurocrypt'94, 1995; Vaudenay, LNCS, 1994];

@ in the Lay-Massey scheme [Vaudenay, Advances in Cryptology-
Asiacrypt’99, 1999];

@ in block ciphers SMS4
[http://www.oscca.gov.cn/UpFile/200621016423197990.pdf];

@ in stream ciphers Loiss [Feng-Feng-Zhang, et al, LNCS, 2011].



Algebraic degree

Definition 1

Any function from Fpn to Fpn can be uniquely expressed by a univariate
polynomial

p"—1
F(x) = D bix' € Fprl]/(x" — x)
i=0
and the algebraic degree of F is defined as
deg(F) = o;nii),(;n{th(l) . b; # 0},

where wty(s) is the p-weight of an integer s, 0 < s < p”", defined as
wit,(s) = Y7 si by its p-ary expansion s = 3.1~ s;p'.

For cryptographic applications, it is usually desirable that the PPs in use
have high algebraic degree.



The upper bound of algebraic degree of CPPs

@ Any CPP of F; with g > 3 has reduced degree at most g — 3
[Niederreiter-Robinson, J. Aust. Math. Soc. A, 1982; Wan, J. Aust.
Math. Soc. A, 1986].

@ Any CPP of Ik with p“" > 3 has maximum algebraic degree
kn(p—1) — 1.



The algebraic degree of some known CPPs

CPPs Finite field | Algebraic degree Literature
Monomial CPPs|  Fyn deg<n-—1 [Sarkar et al., LNCS, 2012]
Sparse CPPs Fy2n deg <3 [Tu-Zeng-Hu, FFA, 2014]
Monomial CPPs|  Fop deg < k [Wu-Li-Helleseth-Zhang, FFA, 2014]
Sparse CPPs Fs2n deg < n+1 |[[Wu-Lin, Discret. Appl. Math. 2015]
Sparse CPPs Fa2n deg <2n+1 [Xu-Cao, FFA, 2015]
Monomial CPPs IF kn deg < 4 [Bassalygo-Zinoviev, FFA, 2015]
Sparse CPPs IF ko deg<n+1 [Bartolia-Giulietti-Zini, FFA, 2016]
Recursive CPPs IF i deg < kn [Zha-Hu-Cao, FFA, 2015]

Table: The algebraic degree of some known CPPs



@ A limited number --» known constructions of CPPs.

@ The cryptographic properties of CPPs --» not taken into
consideration.

@ None of the known (infinite) classes of CPPs --» sufficiently high
algebraic degree.



@ New approaches --+» CPPs?
@ Upper bound on the algebraic degree --+ CPPs?

@ CPPs--» nearly optimal algebraic degree?



© Constructions from Feistel and MISTY Structures



The applications of Feistel and MISTY structures

The Feistel and MISTY structures have been used in the design of many
block ciphers. For examples:

e in DES algorithm;
e in ZUC algorithm;
@ in Lightweight S-Boxes;



1-round Feistel and MISTY structures

X1 X2 X1 X2

341 Y2 n Y2 n Y2

Qp = (x2, p(2) +x1) ®p = (x2, p(x1) —x2) Vp = (p(x2), p(x2) + x1)
1-round Feistel structure 1-round L- MISTY structure  1-round R-MISTY structure

Figure: Balanced Feistel and MISTY structure without round key



CPPs from one-round Feistel and MISTY structions

Let p(z) be a polynomial from IF to itself. Let Qp, ®, and V, be three
mappings from IF?7 to itself defined by

Qp(x1,%2) = (%2, p(x2) + x1),
Ep(x1,x2) = (x2, p(x1) — x2), (1)
Vp(x1,x2) = (p(x2), p(x2) + x1),

where x = (x1, x2) € IF%. Then the mappings Qp, ®, and W, are CPPs of
Fé when p(z) permutes F.

v




Two-round Feistel and MISTY structures

x1+ pi(x) = }/1\;_< x1 + p1(x2) + p2(x2) = y2

Pp, 0Qp, = <X1 + p1(x2), x1 + p1(x2) + Pz(X2)>

Figure: ®,, 0 Q,, from two-round structure



Two-round constructions

Proposition 1

Let p1(z), p2(z) be two permutations of Fon. Then each mapping in
S ={Vp,08p,, Qp, 0Pp, Wp, 0P, Qp, 00, , D, 00,, Qp, 0V, , B0V, }
is a CPP of F2,.

o &, 0®, isa CPP of F3, if p1(z) + pa(p1(z) + z + ) permutes Fan
for any v € Fan where p1(z) and pa(z) are two permutations of Fan.

o W, oW, isa CPP of F3, if p1(2) + z + pa(z + ) permutes Fan for
any v € Fon where p1(z) and pa(z) are two permutations of [Fan.



Three-round Feistel and MISTY structures

(y1,2) = (Pz(Xz) + p1(x2) + x1, p3(p2(x2) + p1(x2) + x1) + p1(x2) + X1>
(Y1,}/2) = QP3 © (Dpz © Qpl(xlax2)



Three-round constructions

Let px(z) and p3(z) + z be two permutations of Fan. Let p1(z) be a
polynomial over Fon such that pi(z) + p2(z) is a permutation. Then
Qp; 0 Pp, 0Qp, is a CPP of F3,.




Useful results about p;(z) + p2(2)

Proposition 2

Let m and k be two odd positive integers with gcd(k(k — 1), m) =1 and
let n = 2m. Suppose p1(z) = uz?"~1 for a non-cubic element u in the unit
circle U = {\ € Fon : A2"t1 =1} and py(z) = 22 -DR"-1D+2 -1 Tphep
p1(2), p2(z) and p1(z) + pa2(z) are all permutation polynomials over Fan.

Proposition 3

Let g1 and g» be polynomials over Fq with q being a power of 2. Let ®g,
and Vg, be defined as in (1). If g1(z) and g»>(z) are CPPs of Fy, then &g,
Vg, and &g + Vg, are PPs ofIF%.




Generalized construction

Theorem 2

Let p1(z), p2(2), p3(z) be polynomials over Fpn for any prime p. Let F be
a function from F%n to itself given by

F(x) = (p1(—x2) — x1 — p3( p2( p1(—x2) —x1) — x2), p2( P1(—x2) — x1) — x2)

where x = (x1,x2) € F2,.

The polynomial F(x) is a CPP of an if the following two conditions are
satisfied:

(1) p1(z) — p3(z + ) is a permutation of Fpn for any v € Fpn;

(2) p2(z) is a permutation of Fpn.

The function F(x) is closely related to the mapping 2, in Definition 2.



Some trivial examples of p;(z) and p3(2)

o Let pi(z) = p(z) + Z, o aizP "in Fpn[z] with a PP p(z) of Fpn
o Let p3(z) = Y03 aiz” .

o pi(2) — ps(z+7) = p(z) = X1 aivP is a PP of Fpn for any
Y€ Fpn



Non-trivial examples of p;(z) and p3(z) for p = 2

Proposition 4

Let n = 2m with an odd positive integer m and d = 2% + 1 with an even
positive integer k. Let w be a primitive root of Fy, p1(z) = z? and

p3(z) = wz9. Then p1(z) + p3(z + ) for any v € Fan is a permutation of
Fon .




Non-trivial examples of p;(z) and p3(z) for p =3

Proposition 5

For a positive odd integer n with n > 3, if d = —1(mod 3) and
ged(d, 32" — 1) = 1, then

(z4+1)? +(z—-1)Y =2Dy(z,1)

is a permutation of F3n, where Dy(z,1) is the Dickson polynomial.

Corollary

| A\

Let n and k be two positive odd integers with k < n— 2. Let d = %
and p1(z) = z9, p3(z) = —z9 be polynomials over F3n. Then
p1(z) — p3(z + ) is a permutation of F3n for any «y in F3n.

¢




e Algebraic degree



The upper bounds on algebraic degree

@ Let n be any positive integer.
® Any CPP of F2n —-»deg < 2n(p — 1) — 1.

CPPs Finite field | Upper bound
Any one-round CPPs F2, n—1
Any two-round CPPs F3n 2n—3
12 classes of three-round CPPs 2, 2n—3
4 classes of three-round CPPs 2, 2n—2
A class of general CPPs F2. 2n(p—1) -3

Table: The upper bounds of algebraic degree of the proposed CPPs

@ The upper bounds are achievable by carefully choosing the
polynomials p;(z), i = 1,2, 3.



@ Conclusion



Conclusion

o Feistel and MISTY structures --+ CPPs;
@ Upper bounds on the algebraic degree --+ CPPs;
@ CPPs--» nearly optimal algebraic degree.
[3 Xiaofang Xu, Chunlei Li, Xiangyong Zeng, Tor Helleseth,

Constructions of complete permutation polynomials, Designs, Codes
and Cryptography, 2018, DOI 10.1007 /s10623-018-0480-7.



Open problems

Open Problem 1

Find polynomials p1(z), p2(z) in Fpn[z] with other forms such that
p1(z) — p2(z + ) is a permutation of Fpn for any v € Fpn.

| \

Open Problem 2

For a PP p(z) in Fpn[z], if p(z) — Bp(z + ) permutes Fpn for any v € Fpn
with 8 € Fpn \ {0,1}, do there exist some relationship between p(z) and
perfect nonlinear functions?

| A\,

Open problem 3

Do there exist CPPs with maximum possible algebraic degree constructed
from the Feistel structure and/or MISTY structure?




Thanks for your attention!



