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Motivation of our study

In 1973 Delsarte derived n linear inequalities, which are called linear
programming bounds, that should be satisfied by all codes of length n.

The first inequality, which is called Plotkin’s bound, was obtained by

Plotkin in 1960. And it can be proved by counting the number of
(

0
1

)
or(

1
0

)
in a ‘what we call’ codebook of the code in TWO ways.

Now natural question arises: Can we prove Delsarte’s other inequalities
by a counting method?

We will see in a moment that Plotkin’s idea can be FAR
GENERALIZED, and can be applied to other problems of coding theory
in a ‘slightly modified’ form.
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Binary case

The codebook of a code

Let C be a binary (n,M) code with distance distribution {Ai}n
i=0.

Consider C as a codebook, i.e., C is an (0, 1)-matrix of size M × n in
which each codeword c ∈ C is a row.

M

n

—— c1 ——

—— cM ——

·
·
·

Figure: C as a codebook
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Binary case

Decomposition of Krawtchouk polynomial

Even and odd Krawtchouk polynomial

We introduce the even (resp. odd) Krawtchouk polynomials by

P+
k (x ; n) =

k∑
j=0

j=even

(
x
j

)(
n − x
k − j

)
,

P−k (x ; n) =
k∑

j=0
j=odd

(
x
j

)(
n − x
k − j

)
.

The ordinary Krawtchouk polynomial which is defined by

Pk (x ; n) =
k∑

j=0

(−1)j

(
x
j

)(
n − x
k − j

)

becomes P+
k (x ; n)− P−k (x ; n) and P+

k (x ; n) + P−k (x ; n) =
(n

k

)
.
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Binary case

Delsarte’s Linear Programming Bounds for binary codes

We state Delsarte’s Linear Programming Bounds for binary codes.

Theorem (LP bounds for binary codes)

(a)
n∑

i=1

P−k (i; n)Ai ≤
2M1

M

(
n
k

)
, (1)

(b)

−
n∑

i=1

P+
k (i; n)Ai ≤ −

2M2

M

(
n
k

)
, (2)

where M1 =

{
M2

4 if M is even,
M2−1

4 if M is odd,
and M2 =

{
M(M−2)

4 if M is even,
(M−1)2

4 if M is odd.



Motivation Delsarte’s linear programming bound Delsarte’s linear programming bound for constant weight codes MacWilliams Identity from a codebook counting

Binary case

Delsarte’s Linear Programming Bounds for binary codes-Cont.

Remark

Equation (2)− (1) becomes the original Delsarte’s linear programming
bounds:

- (2) becomes

2M2

M

(
n
k

)
≤

n∑
i=1

P+
k (i; n)Ai ,

- and −(1) becomes

−2M1

M

(
n
k

)
≤ −

n∑
i=1

P−k (i; n)Ai .
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Binary case

Remark-Cont.

- By adding them, we obtain

−

(
n
k

)
≤ 2M2 − 2M1

M

(
n
k

)
≤

n∑
i=1

Pk (i; n)Ai ,

- and it becomes

n∑
i=0

Pk (i; n)Ai ≥ 0, k = 0, 1, . . . , n,

- which is the original Delsarte’s linear programming.
Hence our theorem is “a little" better than the original Delsarte’s linear
programming.
Actually it gives that

n∑
i=0

Pk (i; n)Ai ≥


0 if M is even,

1
M

(
n
k

)
if M is odd.
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Binary case

Proof of Theorem by codebook counting

We consider C as a codebook and count the number of 2× k
submatrices of C which has odd number of 1s in TWO ways.

We begin with row computation:

M

n

v

u

· · ·q q q
q q q︷ ︸︸ ︷k

Figure: The contribution from rows u, v
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Binary case

Proof of Theorem-Cont.

- The contribution from two rows u, v becomes

k∑
j=0

j=odd

(
d(u, v)

j

)(
n − d(u, v)

k − j

)
.

- Therefore total contribution from the rows becomes

∑
u,v∈C

u 6=v

k∑
j=0

j=odd

(
d(u, v)

j

)(
n − d(u, v)

k − j

)
,

- and finally, by collecting all pairs with d(u, v) = i , it becomes

n∑
i=1

∑
u,v∈C

d(u,v)=i

P−k (i; n) = M
n∑

i=1

P−k (i; n)Ai .
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Binary case

Proof of Theorem-Cont.

We next consider column computation:

M

· · ·

i1 i2 ik

u′i1 u′i2 u′ik

1
1
...

1
0
...

0

wt(u′i1 + · · ·+ u′ik )

u′i1 + · · ·+ u′ik

Figure: The contribution from columns i1, i2, . . . , ik
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Binary case

Proof of Theorem-Cont.

- The contribution from columns i1, i2, . . . , ik becomes

2wt(u′i1 + · · ·+ u′ik )[M − wt(u′i1 + · · ·+ u′ik )].

- Therefore the total contribution from columns becomes

2
∑

i1<i2<···<ik

wt(u′i1 + · · ·+ u′ik )[M − wt(u′i1 + · · ·+ u′ik )] ≤ 2M1

(
n
k

)
.

- Equality holds if and only if wt(u′i1 + · · ·+ u′ik ) =

{
M
2 if M is even,
(M±1)

2 if M is odd,
for all i1 < i2 < · · · < ik .
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q-ary case

Delsarte’s Linear Programming Bounds for q-ary codes

Theorem (Linear Programming Bounds for q-ary codes)

For k = 1, 2, · · · , n, we have

n∑
i=0

Pk (i; n)Ai ≥ 0,

where Pk (i; n) is defined by

Pk (i; n) =
k∑

j=0

(−1)j(q − 1)i−j

(
i
j

)(
n − i
k − j

)
.
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q-ary case

Delsarte’s Linear Programming Bounds for q-ary codes-Cont.

Remark

For k = 0, P0(i; n) = (q − 1)i ≥ 0 for all i . Therefore the inequality also
holds for k = 0.

Pk (i; n) is called the q-ary Krawtchouk polynomial. It is known that

Pk (i; n) =
∑

wt(v)=k

λ(u · v)

where u is a vector of wt(u) = i .

- Here λ : Fq → S1 is defined as follows: We know q = pn for some prime
p.

λ(x) = ζTr(x),

where ζ is a primitive p-th root of unity, and Tr is the trace map of GF (q)
into GF (p).
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q-ary case

Notation

Notation

For a = (a1, · · · , aj) ∈ (F∗q)j , we introduce

N(a) = |{b = (b1, · · · , bj) ∈ (F∗q)j |b · a 6= 0}|,

Z (a) = |{b = (b1, · · · , bj) ∈ (F∗q)j |b · a = 0}|.

Proposition

N(a) = q−1
q [(q − 1)j − (−1)j ],

Z (a) = (q − 1)j − N(a) = 1
q (q − 1)j + q−1

q (−1)j .

Notice that these values are independent of the choice of a in (F∗q)j .
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q-ary case

Target to count

Codebook of a q-ary code

Let C be a q-ary code of length n with cardinality M.

Consider C as a codebook, i.e., C = (cmi) is an M × n matrix over Fq .

Let A be a 2× k submatrix of C with rows a and b,

and α an element in (F∗q)k .

Our target

We are going to count the number of pairs (A, α) such that a · α 6= b · α
in TWO ways.
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q-ary case

Comparison with binary case

Target again

We are going to count the number of pairs (A, α)
- where

A =

(
cmi1 , cmi2 , · · · , cmik

cli1 , cli2 , · · · , clik

)
,

with m 6= l and i1 < i2 < · · · < ik ,
- and α = (α1, · · · , αk ) ∈ (F∗q)k

- such that α1cmi1 + α2cmi2 + · · ·αk cmik 6= α1cli1 + α2cli2 + · · ·αk clik .

binary case

- If q = 2, then α becomes (1, 1, · · · , 1).

- Therefore, the number of such pairs reduced to the numbers of 2× k
submatrices of C which contain odd number of 1s.
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q-ary case

Decomposition of q-ary Krawtchouk polynomial

Even and odd q-ary Krawtchouk polynomial

We introduce the odd (resp. even) q-ary Krawtchouk polynomials by

P−k (i; n) =
k∑

j=0

[(q − 1)j − (−1)j ]

2
(q − 1)k−j

(
i
j

)(
n − i
k − j

)
,

P+
k (i; n) = (q − 1)k

(
n
k

)
− P−k (i; n).

When q = 2, it reduced to binary even (resp. odd) Krawtchouk
polynomial, namely

P−k (i; n) =
k∑

j=0
j=odd

(
i
j

)(
n − i
k − j

)
,

P+
k (i; n) =

k∑
j=0

j=even

(
i
j

)(
n − i
k − j

)
.
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q-ary case

Decomposition of q-ary Krawtchouk polynomial-Cont.

Proposition

(a) P+
k (i; n) + P−k (i; n) =

∑
wt(v)=1 1 = (q − 1)k(n

k

)
.

(b) P+
k (i; n)− P−k (i; n) = Pk (n; i).

Question

Can we do a similar job for other ‘good’ graphs or association schemes?

We have decomposed ‘orthogonal polynomials’ for Hamming graphs
H(n, 2) and H(n, q).
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q-ary case

More notation

Notation

Write Fq = {0 = w1,w2, · · · ,wq}.
For a = (a1, · · · , aM) ∈ FM

q , we define

χm(a) = |{j|aj = wm}|.

Thus we trivially have that
∑q

m=1 χm(a) = M.

Definition of S(k)

We are also interested in the sum S(k) defined by S(k) =∑
α∈(F∗q )k

∑
m<l

i1<i2<···<ik
χm(α1u′i1 + · · ·+ αk u′ik )χl(α1u′i1 + · · ·+ αk u′ik ).

Later we will maximize this term!
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q-ary case

Sketch of proof of q-ary LP bound

Sketch

We count the number S1(k) of pairs (A, α) such that a · α 6= b · α in
TWO ways.
By row counting, we obtain

S1(k) =
2(q − 1)

q
M

n∑
i=1

P−k (n; i)Ai . (3)

By column counting, we obtain

S1(k) = 2S(k). (4)

It follows from (3), (4) and above proposition that∑n
i=1 P−k (i; n)Ai = −(M − 1)(q − 1)k nk + 2q

(q−1)M S(k).

By maximizing S(k), we deduce that S(k) ≤ (q − 1)k(q
2

)(n
k

)
(M

q )
2 and

the result follows.
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Binary case

Codebook of a constant weight code

Here we will study the codebook of a constant weight code. Again we begin
with binary case.

Codebook of a constant weight code

Let C be a binary code of length n, cardinality M in which every
codeword has constant weight, say w .

We may consider C as a binary matrix of size M × n in which every row
has w number of 1s.
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Binary case

1-row k-column formula

1-row k-column formula

We have ∑
wt(u′1 + · · ·+ u′k ) = MP−k (w ; n),

where the sum is taken over all distinct k columns u′1, · · · , u′k of C.

- We count the number of 1× k submatrices of C in two ways.
- Row computation: Each row has w 1s and n − w 0s. Hence the

contribution from each row becomes

k∑
j=0

j=odd

(
w
j

)(
n − w
k − j

)
= P−k (w ; n),

and total contribution becomes MP−k (w ; n).
- Column computation: Take any k columns, say i1, · · · , ik of C. The

contribution from these columns becomes wt(u′i1 + · · ·+ u′ik ). Hence the
result.
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Binary case

2-row k-column formula

2-row k-column formula

We have

n∑
i= d

2

P−k (2i; n)A2i ≤
2
M

[((

(
n
k

)
)− rk )qk (M−qk )+ rk (qk +1)(M−qk −1)],

and we also have

−
n∑

i= d
2

P+
k (2i; n)A2i ≤

2
M

[((

(
n
k

)
)− rk )qk (M − qk )]

+
2
M

[rk (qk + 1)(M − qk − 1)]− (M − 1)

(
n
k

)
,
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Binary case

2-row k-column formula-Cont.

2-row k-column formula

where qk and rk are the quotient and the remainder, respectively, when
dividing MP−k (w ; n) by

(n
k

)
.

There we can write

MP−k (w ; n) = qk

(
n
k

)
+ rk

with 0 ≤ rk <
(n

k

)
.
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Binary case

Proof of 2-row k-column formula

Idea of proof

We count the number of 2× k submatrices of C which has odd number
of 1s in TWO ways.

In this process we use the result of 1-row k-column formula intensively.

Sketch of proof

Row computation: The contribution from rows u, v becomes

∑
u,v∈C

u 6=v

k∑
j=0

j=odd

(
d(u, v)

j

)(
n − d(u, v)

k − j

)
.



Motivation Delsarte’s linear programming bound Delsarte’s linear programming bound for constant weight codes MacWilliams Identity from a codebook counting

Binary case

Proof of 2-row k-column formula-Cont.

Sketch of proof-Cont.

Therefore the total contribution from the rows becomes

n∑
i= d

2

∑
d(u,v)=2i

P−k (2i; n) = M
n∑

i= d
2

P−k (2i; n)A2i .

We next consider column computation:

- The contribution from columns i1, i2, . . . , ik becomes

2wt(u′i1 + · · ·+ u′ik )[M − wt(u′i1 + · · ·+ u′ik )].

- Therefore the total contribution from the rows becomes

2
∑

i1<i2<···<ik

wt(u′i1 + · · ·+ u′ik )[M − wt(u′i1 + · · ·+ u′ik )]
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Binary case

Proof of 2-row k-column formula-Cont.

Sketch of proof-Cont.

- We want to maximize the last sum, and consider the distribution of all
possible weights

wt(u′i1 + · · ·+ u′ik )

where the k columns i1, i2, . . . , ik run over all possibilities.
- We conclude that the sum maximized when these weights are ‘almost

equally’ distributed.
- We know from 1-row k-column formula that the sum of possible

(n
k

)
weights is MP−k (w ; n).

- Write MP−k (w ; n) = qk
(n

k

)
+ rk , with 0 ≤ rk <

(n
k

)
. Then the sum

become maximum when rk weights equal to qk + 1, and the remaining(n
k

)
− rk weights equal to qk .

- We finally conclude that the total contribution from the columns

≤ 2[((

(
n
k

)
)− rk )qk (M − qk ) + rk (qk + 1)(M − qk − 1)].
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q-ary case

LP-bound for q-ary constant weight codes

Theorem

For a q-ary code of length n, cardinality M, constant weight w , and
0 ≤ k ≤ n, we have

n∑
i=1

P−k (i; n)Ai ≤
q

(q − 1)M
T (k),

and

−
n∑

i=1

P+
k (i; n)Ai ≤ −(M − 1)(q − 1)k

(
n
k

)
+

q
(q − 1)M

T (k).

The value T (k) can be easily computed when q, n,w ,M, k are given.
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q-ary case

Result

We apply LP bound for constant weight codes, and improve upper
bounds of A(n, d ,w), n ≤ 28 for 22 cases.

We apply LP bound for q-ary constant weight codes, and proved that
A3(9, 3, 7) ≤ 575. Previously known best upper bound was
A3(9, 3, 7) ≤ 576.

We developed improved semidefinite programming bound for codes,
and improve upper bounds of A(n, d), n ≤ 28 for 2 cases.

We developed improved semidefinite LP bound for constant weight
codes, and improve upper bounds of A(n, d ,w), n ≤ 28 for 23 cases.

Question

We still don’t know what is the counter part of semidefinite programming
bound in codebook counting!!
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MacWilliams Identity

From now on, we will provide a combinatorial proof of MacWilliams identity
from codebook counting. We only consider binary case.

Review of MacWilliams identity

Let C be a binary [n, k ] code with weight distribution {Ai}i=0,1,··· ,n. Let
{Bi}i=0,1,··· ,n be the weight distribution of its dual code C⊥.
Let WC(x , y) (resp. WC⊥(x , y)) be corresponding weight enumerator of
C (resp. C⊥).
MacWilliams identity states that

WC(x , y) =
1
|C⊥|WC⊥(x + y , x − y).

By definition MacWilliams identity becomes

n∑
i=0

Aixn−iy i =
1
|C⊥|

n∑
i=0

Bi(x + y)n−i(x − y)i . (5)
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Reformulation of MacWilliams Identity

Reformulation of MW

Putting x = 1 in (5) and use the fact that C is an [n, k ] code, we obtain

n∑
i=0

Aiy i =
1

2n−k

n∑
i=0

Bi(1 + y)n−i(1− y)i .

We set
n∑

i=0

Aiy i =
n∑

i=0

ai(y − 1)i ,

and set
1

2n−k

n∑
i=0

Bi(1 + y)n−i(1− y)i =
n∑

i=0

bi(y − 1)i .

Then MacWilliams identity is equivalent to aν = bν , ν = 0, 1, · · · , n.
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Reformulation of MacWilliams Identity-Cont.

Reformulation of MW-Cont.

By applying the linear operator dν

dyν |y=1, we obtain

aν =
n∑

i=ν

i(i − 1) · · · (i − ν + 1)Ai .

Similarly we obtain

bν = 2k−ν
ν∑

i=0

(−1)i ν!

(ν − i)!
(n − i)!
(n − ν)! .

By equating aν and bν , we finally obtain

n∑
i=0

(
i
ν

)
Ai = 2k−ν

n∑
i=0

(−1)i

(
n − i
n − ν

)
Bi .
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MacWilliams Identity from a codebook

Putting y = 1 in (5) and applying a similar method, we finally conclude
that
MacWilliams identity is equivalent to

n∑
i=0

(
i
ν

)
Ai = 2k−ν

n∑
i=0

(−1)i

(
n − i
n − ν

)
Bi , ν = 0, 1, · · · , n,

and to

n∑
i=0

(
n − i
n − ν

)
Bi = 2ν−k

n∑
i=0

(
n − i
ν

)
Ai , ν = 0, 1, · · · , n.

And these identities can be obtained by counting the number of 1× ν
submatrices

(
1, 1, · · · , 1

)
and

(
0, 0, · · · , 0

)
of the codebook in TWO

ways.
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Thank you for your
attention!


	Motivation
	Delsarte's linear programming bound
	Binary case
	q-ary case

	Delsarte's linear programming bound for constant weight codes
	Binary case
	q-ary case

	MacWilliams Identity from a codebook counting

