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Introduction Results

Projective plane PG(2, q) over Fq

Let Fq be the finite field of order q. The set of n-tuples

Fn
q = {(x1, x2, . . . , xn) | xi ∈ Fq}

is the n-dimensional vector space over Fq.
Let PG(2, q) be the projective plane over Fq, which consists of all
lines through the origin of F3

q over Fq, that is,(
F3
q \ {(0, 0, 0)}

)
/ ∼,

where (a, b, c) ∼ (x, y, z)⇐⇒ (a, b, c) = λ(x, y, z) for some
λ ∈ Fq \ {0}.
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We can express PG(2, q) as

PG(2, q) = {(a, b, 1) | a, b ∈ Fq} ∪ {(a, 1, 0) | a ∈ Fq} ∪ {(1, 0, 0)}.

Thus we have |PG(2, q)| = q2 + q + 1.

The linear equation

ax+ by + cz = 0, a, b, c ∈ Fq, (a, b, c) 6= (0, 0, 0)

is the equation of a line ` in PG(2, q), simply denoted ` = [a, b, c],
i.e.,

` := {(x0, x1, x2) ∈ PG(2, q) | ax0 + bx1 + cx2 = 0}.
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Example 1.

(1) The projective plane PG(2, 2) consists of 7 points and 7 lines.
The set of points in PG(2, 2) is
{(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)},
and the set of lines in PG(2, 2) is
{[0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1]}.
The line x+ y + z = 0 is [1, 1, 1] := {(0, 1, 1), (1, 0, 1), (1, 1, 0)}.
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(2) The set of points in PG(2, 3) is

{(0, 0, 1), (0, 1, 1), (0, 2, 1), (1, 0, 1), (1, 1, 1), (1, 2, 1),
(2, 0, 1), (2, 1, 1), (2, 2, 1), (0, 1, 0), (1, 1, 0), (2, 1, 0), (1, 0, 0)},

and the set of lines in PG(2, 3) is

{[0, 0, 1], [0, 1, 1], [0, 2, 1], [1, 0, 1], [1, 1, 1], [1, 2, 1],
[2, 0, 1], [2, 1, 1], [2, 2, 1], [0, 1, 0], [1, 1, 0], [2, 1, 0], [1, 0, 0]}.

The line x+ y + z = 0 is
[1, 1, 1] := {(0, 2, 1), (1, 1, 1), (2, 0, 1), (2, 1, 0)}.

We note that PG(2, 3) has 13 points and 13 lines and each line
has 4 points in PG(2, 3).



Introduction Results

The following hold in PG(2, q).

Points and lines in PG(2, q)

(1) PG(2, q) consists of q2 + q + 1 points and q2 + q + 1 lines.

(2) Every line contains q + 1 points.

(3) Two distinct lines meet at a point.

(4) There are q + 1 lines passing through a point in PG(2, q).
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Consider quadrics in PG(2, q)

F := ax2 + by2 + cz2 + dxy + eyz + fxz,

where a, b, c, d, e, f ∈ Fq.

Define v(F ) as the zero set of F in PG(2, q), i.e.,

v(F ) := {(x0, x1, x2) ∈ PG(2, q) | F (x0, x1, x2) = 0}.

A conic means a nonsingular quadric.
Any conic has q + 1 (rational) points in PG(2, q) with no three
collinear.
A zero set of a singular quadric is a repeated line or a pair of
distince lines or a point.
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Arcs

An (n, r)q-arc

An (n, r)q-arc is a set K of n points of PG(2, q) such that some r
but no r + 1 of them, are collinear, i.e., |K ∩ `| ≤ r for any line `
and |K ∩ `| = r for some line ` in PG(2, q).

For an (n, r)q-arc K, the line ` is called i-line if |` ∩ K| = i.
Define ai as the number of i-lines to K, i.e.,

ai := #{` | |` ∩ K| = i}.

Note that ai = 0 for i ≥ r + 1.
The (r + 1)-tuple (a0, a1, . . . , ar) is called the spectrum of the arc
K.
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Example 2.

Let C be a conic in PG(2, q) with the equation y2 = xz.

(1) The conic C is a (q + 1, 2)q-arc in PG(2, q).
We note that the conic

C = {(t2, t, 1) | t ∈ Fq} ∪ {(1, 0, 0)}.

Thus |C| = q + 1 and for any line `, we have |C ∩ `| = 0 or 1 or 2.
Thus C is a (q + 1, 2)q-arc.
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(2) For a conic C, we have its spectrum as

a0 =
(q − 1)q

2
, a1 = q + 1, a2 =

(q + 1)q

2
.

Since the tangent lines of C is 1-line, we have a1 = q + 1.
And each 2-line contains exactly two points of C.
Thus we have

a2 =

(
q + 1

2

)
=

(q + 1)q

2
,

and hence

a0 = q2 + q + 1− (a1 + a2) =
(q − 1)q

2
.

Hence the spectrum is

a0 =
(q − 1)q

2
, a1 = q + 1, a2 =

(q + 1)q

2
.
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The value of mr(2, q)

Let mr(2, q) denote the largest n for which there exists an
(n, r)q-arc for given r and q.

We call (mr(2, q), r)q -arc the largest arc for given r and q.

An interesting problem in finite geometry is to determine the exact
values of mr(2, q). Obviously, we have the bound for mr(2, q);

mr(2, q) ≤ (r − 1)q + r.
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Linear codes

For two vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in
Fn
q , the Hamming distance between x and y, denoted by d(x,y) is

the number of positions in which they differ.

An [n, k, d]q linear code C is a k-dimensional linear subspace of Fn
q

over Fq with minimum distance d, where

d = min{d(x,y) | x,y ∈ C,x 6= y}
= min{w(x) | x ∈ C,x 6= 0}.

Here the weight w(x) of x is the number of nonzero positions in x.
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A good code will have small n (for fast transmission of messages),
large k (for a wide variety of messages) and large d ( to correct
many errors).

Optimal linear codes problems

Optimize one of the parameters n, k, d for given values of the other
two for a given field Fq.
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Optimal linear code problems

Optimal linear codes problems by Hill

1 Find Bq(n, d), the largest number qk of codewords for which
there exists an [n, k, d]q code.

2 Find dq(n, k), the largest minimum distance d for which there
exists an [n, k, d]q code.

3 Find nq(k, d), the smallest length n of codewords for which
there exists an [n, k, d]q code.

A code which achieves one of the above values is called optimal,
that is, we call dimension optimal, distance optimal and length
optimal, respectively.
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We note that the following;

A code is length optimal =⇒ distance optimal,
=⇒ dimension optimal.

Example 1.

Let C1 be a [7, 2, 4]2 linear code with a generator matrix(
1 0 1 1 1 0 0
0 1 0 1 1 1 1

)
2×7

.

Then C1 is a distance optimal because there is no [7, 2, 5]2 code.
But C1 is not a length optimal and a dimension optimal because
there is a [6, 2, 4]2 code and a [7, 3, 4]2 code, respectively.
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Griesmer bound

Griesmer bound

For an [n, k, d]q linear code, we have

n ≥ gq(k, d) := d+

⌈
d

q

⌉
+

⌈
d

q2

⌉
+ · · ·+

⌈
d

qk−1

⌉
.

A linear code for which equality holds is called a Griesmer code.

We note that the Griesmer bound is an important lower bound of
nq(k, d), that is,

nq(k, d) ≥ gq(k, d).

Every Griesmer code is a length optimal.
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Linear codes and arcs

Let C be an [n, 3, d]q code with a generator matrix G.
Consider multi-set S whose elements are columns of G.
Then S can be regarded as a multi-set in PG(2, q).

Thus we have the following;

Theorem

An [n, 3, d]q linear code gives an (n, n− d)q-arc in PG(2, q).

Equivalently, an (n, r)q-arc gives an [n, 3, n− r]q linear code.
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Recall mr(2, q) denotes the largest arc for given r and q, and
mr(2, q) ≤ (r − 1)q + r.

Theorem.

For (r−2)q+r < mr(2, q) ≤ (r−1)q+r, the largest (mr(2, q), r)q-
arc corresponds to a Griesmer code(length optimal code).
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We can easily see the following;

1 For r = 1, the value m1(2, q) = 1 and the arc is a singleton
set.

2 For r = q, the value mq(2, q) = q2 and the arc is the
complement of a line `0, i.e., PG(2, q) \ `0.

3 For r = q + 1, the value mq+1(2, q) = q2 + q + 1 and the arc
is the projective plane PG(2, q).

A few values of mr(2, q), (2 ≤ r ≤ q − 1) are known for general q.
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Known results on mr(2, q)

Theorem. Bose (1947): On the values of m2(2, q)

We have

m2(2, q) =

{
q + 1, q odd,

q + 2, q even.

Theorem. Barlotti (1965) and Ball(1996)

For q odd prime, we have

mr(2, q) = (r − 1)q + 1 for r =
q + 1

2
or r =

q + 3

2
.

Theorem. Denniston (1969)

For q even, we have

mr(2, q) = (r − 1)q + r for r = 2e ≤ q.
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The values of mr(2, q)
r/q 3 4 5 7 8 9 11 13 16 17 · · ·

2 4 6 6 8 10 10 12 14 18 18 · · ·
3 9 11 15 15 17 21 23 28 28–33
4 16 22 28 28 32 38–40 52 48–52
5 29 33 37 43–45 49–53 65 61–69
6 36 42 48 56 64–66 78–82 79–86
7 49 55 67 79 93–97 95–103
8 65 78 92 120 114–120
9 89–90 105 129–130 137

10 100–102 118–119 142–148 154
11 132–133 159–164 166–171
12 145–147 180–181 183–189
13 195–199 205–207
14 210–214 221–225
15 231 239–243
16 256–261

From S. Ball, http://www-ma4.upc.es/ simeon/codebounds.html



Introduction Results

Problems

Let r be an integer with 2 ≤ r ≤ q − 1.

(1) Find mr(2, q), the maximum value of n for which an
(n, r)-arc exists in PG(2, q).
Equivalently, find length optimal codes meeting the Griesmer
codes.

(2) Classify (n, r)-arcs in PG(2, q) for n = mr(2, q) up to
projective equivalence.
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Consider PG(2, q) as follows;
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A partition of PG(2, q)

For odd prime q, we denote by QR the set of quadratic residues
mod q and by NQR the set of quadratic nonresidues mod q.

We consider a conic with the equation ax2 + by2 + cz2 + xy for
(a, b, c) ∈ PG(2, q), denoted by f(a,b,c).
Let F := {f(a,b,c) | (a, b, c) ∈ PG(2, q)}.

Lemma 1

For odd prime q, the conic 4xy − z2 and a line [u, v, w] has no
common point in PG(2, q) if w2 − uv ∈ NQR.

We express the line [u, v, w] as follows;

[u, v, w] := {(a, b, 1) ∈ PG(2, q) | au+ bv+w = 0} ∪ {(−v, u, 0)}.
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For two points (a, b, 1), (a′, b′, 1) ∈ [u, v, w], consider two conics
C1 := ax2 + by2 + z2 + xy and C2 := a′x2 + b′y2 + z2 + xy.
We have the following;

Lemma 2

Two conics C1 and C2 in F which is given above are disjoint if
uv ∈ NQR.

Next theorem shows that projective plane can be partitioned into
disjoint conics and a point.
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Theorem 3

For odd prime q, the projective plane PG(2, q) consists of q disjoint
conics and a point.

Proof) Choose q conics in F such that (a, b, c) ∈ [u, v, w] and
(a, b, c) 6= (−v, u, 0).
Here u, v and w satisfies that

uv ∈ NQR and w2 − uv ∈ NQR.

We note that such a line [u, v, w] exists.
And the point (0, 0, 1) is outside of the conics in F . Thus we have

PG(2, q) = {(0, 0, 1)} ∪
⋃̇

(a,b,c)∈[u,v,w]\{(−v,u,0)}
f(a,b,c).
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The case q = 7

Consider conics in F with the equation

f(a,b,c) = ax2 + by2 + cz2 + xy,

and a line [3, 1, 1]. Then the line [3,1,1] satisfies
uv = 3 ∈ NQR and w2 − uv = 1− 3 ≡ −2 ≡ 5 ∈ NQR.
Choose 7 points (a, b, c)
on the line [3, 1, 1], (a, b, c) 6= (−1, 3, 0) = (2, 1, 0), where [3, 1, 1] =
{(2, 0, 1), (0, 6, 1), (5, 5, 1), (1, 3, 1)(6, 2, 1), (4, 1, 1), (3, 4, 1), (2, 1, 0)}.
Then the union of 7 conics and a point {(0, 0, 1)} is the whole
plane PG(2, 7).
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Conics with one common point

We consider the conics in F with f(a,b,c), where (a, b, c) is on the
line [0, 1, 0] = {(a, 0, 1) | a ∈ Fq} ∪ {(1, 0, 0)}.
Then the intersection of f(a,b,c), (a, b, c) ∈ [0, 1, 0] is the point
(0, 1, 0).

Next theorem gives another geometrical configuration of PG(2, q).
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Theorem 4

For odd prime q, the projective plane PG(2, q) consists of q conics
with a common point P and common tangent line at P .

Proof) Consider the line [0, 1, 0] = {(a, 0, 1) | a ∈ Fq}.
Choose q conics f(a,0,1) with a ∈ Fq, a 6= 1.
Then the intersection of q conics f(a,0,1), a 6= 1 is the point
(0, 1, 0).
Note that the common tangent line of q conics f(a,0,1) is the line
[1, 0, 0]. Then

PG(2, q) = [1, 0, 0] ∪
⋃

a∈Fq ,a6=1
f(a,0,1).
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For a ∈ Fq \ {0}, we have

#{a ∈ Fq | 1− a ∈ NQR, a 6= 0} = q − 1

2
,

and

#{a ∈ Fq | 1− a ∈ NQR ∪ {0}, a 6= 0} = q + 1

2
.

Using this, we have the following;
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Theorem 5

(1) The union of f(a,0,1) satisfying 1−a ∈ NQR is ( q(q−1)2 +1, q+1
2 )q

maximal arc with the spectrum

a0 = q, a1 = 1, a q−1
2

=
(q − 1)q

2
, a q+1

2
=

(q + 1)q

2
.

(2) The union of f(a,0,1) satisfying 1− a ∈ NQR∪ {0} is ( q(q+1)
2 +

1, q+3
2 )q maximal arc with the spectrum

a0 = 0, a1 = q + 1, a q+1
2

=
(q − 1)q

2
, a q+3

2
=

(q + 1)q

2
.
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Remark

The maximal arcs in Theorem 5 is exactly same arcs with one ’s
of Barlotti (1965) and Ball(1996). That is, for a given conic C,
if t = q−1

2 , the arcs is the union of a point of C and its internal

set I(C) and t = q+1
2 , the arcs is the union of the conic C and its

internal set I(C).

For q = 7, we have
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The case q = 7

In PG(2, 7), consider two conics with two common points (0, 1, 0)
and (1, 0, 0) as follows;

C1 := z2 + xy, C2 := 6z2 + xy.

Then the union of C1, C2 and the point {(0, 0, 1)} is the largest
(15, 3)7-arc with spectrum a0 = 12, a1 = 0, a2 = 15, a3 = 30.
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The case q = 13

In PG(2, 13), consider three conics with two common points
(0, 1, 0) and (1, 0, 0) as follows;

C1 := 4z2 + xy, C2 := 5z2 + xy C3 := 12z2 + xy.

Then the union of C1, C2 and C3 is a (38, 4)13 maximal arc.
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The case q = 8

When q is even, we consider only q = 8.
It is known that the largest (28, 4)8-arc exists uniquely upto
projective equivalence and it’s spectrum is a0 = 10 and a4 = 63.

We represent that (28, 4)8-arc as several ways.
Let α be a primitive element of F8 with α3 + α+ 1 = 0.
Here we express the arc with conics.
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(1) The (28, 4)8-arc is expressed as the union of three disjoint
conics with common nucleus.
Let Ci (i = 1, 2, 3) be a conic defined by the equation

Ci : x
2 + y2 + λiz

2 + xy = 0,

where {λ1, λ2, λ3} = {1, α, α3}. Then the point (0, 0, 1) is the
nucleus of Ci (i = 1, 2, 3). The set C1 ∪ C2 ∪ C3 ∪ {(0, 0, 1)}
forms the (28, 4)8-arc.
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(2) The (28, 4)8-arc is expressed using four conics passing through
two points.
Let Ci (i = 1, . . . , 4) be a conic defined by the equation

Ci : µiz
2 + xy = 0,

where {µ1, µ2, µ3, µ4} = {1, α3, α5, α6}.
Then the point (0, 0, 1) is the nucleus of Ci (i = 1, . . . , 4).
For i 6= j, Ci ∩ Cj = {(1, 0, 0), (0, 1, 0)}.
The set ∪4i=1Ci \ {(1, 0, 0), (0, 1, 0)} is a (28, 4)8-arc.
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(3) For a conic C in PG(2, 8), the conic C has the spectrum
a0 = 28, a1 = 9, a2 = 36.
Then the number of 0-lines is 28.
Those lines forms a dual (28, 4)8-arc, i.e., the set
{(a, b, c) ∈ PG(2, 8) | [a, b, c] is a 0-line of C} is the (28, 4)8-arc.
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Zero set of a polynomial

Theorem 6. (Homma and Kim, 2018)

Let k be an integer with 1 ≤ k ≤ n, and PG(k − 1, q) the linear
subspace defined by xk = xk+1 = · · · = xn = 0. Then the ideal of
PG(n, q) \ PG(k − 1, q) in Fq[x0, . . . , xn] is generated by

{xqixj − xix
q
j | 0 ≤ i < j ≤ n}

∪ {xs
n∏

i=k

(xq−1i − xq−1s ) | s = 0, 1, . . . , k − 1}.
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Corollary 7.

The ideal of PG(n, q)\{(1, 0, . . . , 0)} in Fq[x0, . . . , xn] is generated

by {xqixj − xix
q
j | 0 ≤ i < j ≤ n} ∪ {x0

∏n
i=1(x

q−1
i − xq−10 )}.

Corollary 8.

Let P0 ∈ PG(n, q). Then there is a homogeneous polynomial F
of degree d in Fq[x0, . . . , xn] such that the hypersurface H defined
by F = 0 satisfies H(Fq) = PG(n, q) \ {P0} if and only if d ≥
(q − 1)n+ 1.

Corollary 9.

Let P0 ∈ PG(2, q). Then there is a homogeneous polynomial F of
degree d in Fq[x0, x1, x2] such that the curve H defined by F = 0
satisfies H(Fq) = PG(2, q) \ {P0} if and only if d ≥ 2q − 1.
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Another partition of PG(2, q) with conics

Next theorem gives another partition of PG(2, q) with conics.

For odd q, the following holds.

Theorem 10.

Let P be a point in PG(2, q) and let `i (i = 0, . . . , q) be q + 1
lines passing through P . Then there exists disjoint q − 1 conics
C1, . . . , Cq−1, a line `′ and satisfying the following conditions;

PG(2, q) = ∪q−1i=1Ci ∪ `′ ∪ {P}.

and

∪
q−1
2

i=1Ci ⊂ ∪
q−1
2

i=0 `i and ∪q−1
i= q+1

2

Ci ⊂ ∪q+1

i= q+1
2

`i,

by renumbering the lines `i.
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Let H be the set (∪
q−1
2

i=2Ci) ∪ (∪q+1

i= q+1
2

`i) ∪ `′.
Then H is the complement of the conic C1, and of degree

(q − 3) +
q + 1

2
+ 1 =

3

2
(q − 1).

We obtained a polynomial H whose zero set is the complement of
the conic C1.
Now we prove that the degH is the minimum of such polynomials
whose zero set is the complement of C1.
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Theorem 11.

We have

min{deg f | v(f) = PG(2, q) \ C1} =
3

2
(q − 1).

Proof. Suppose that there exists a polynomial f of degree
≤ 3

2(q − 1)− 1 such that v(f) = PG(2, q) \ C1.
Let {Q0, Q1, . . . , Qq} = C1.
Consider q−1

2 lines Q1Q2, . . . , Qq−2Qq−1 and any line ` containing

Qq but not Q0. Then the product of f and these q+1
2 lines is the

polynomial of degree ≤ 2q − 2, whose zero set is exactly
PG(2, q) \ {Q0}. It contradicts the Corollalry 9.
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Thank you for your attention!!
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