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Outline of this talk

In this talk, typically ‘a code’ means a self-dual code over a Galois
ring .

1 Review of the classification problem and brief history of
classification of codes

2 Galois rings, p-adic and q-adic integer rings and the relations
between them.

3 Monomial transformation and automorphism group of codes.
4 The number of codes for mass formula.
5 Classification of codes of length 4 for all odd prime p : free code

and non-free code.
6 Improvements : self-dual codes over q-adic integers and codes

of length 6. We present some examples.
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Classification problem

The general strategy for the classification problem is as follows.
1 Calculate the total number of all distinct codes, say N.
2 Choose a code C as a representative and calculate its

automorphism.
3 Count the number of codes in the equivalent class in which C

included.
4 Repeating this step until the total number of codes classified

meets the total number of codes N.
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Mass formula

Let N(n) be # of all self-dual codes of length n and s be # of
equivalent classes. Then we can get the mass formula :

s∑
j=1

|Tn|
|Aut(Cj )|

= N(n)

where Tn = {σγ | γ ∈ Dn, σ ∈ Sn} is the group of monomial
transformations.
Acquiring total number of codes and automorphisms of each class is
critical for the classification of self-dual codes.
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Classification of self-dual codes over Galois rings

In 1996, P. Gaborit found mass formula of self-dual codes over
Z4.
In 2008, K. Nagata et F. Nemenzo and H. Wada found mass
formula of self-dual codes over Zps for odd prime p.
In 2011, K. Nagata et F. Nemenzo and H. Wada found mass
formula of self-dual codes over Z2s as well.
In 2011, Y.H. Park classified self-dual codes over Zp of length 4.
In 2017, Park and Choi classified self-dual codes over Zp2 of
length 4.
We generalized the results on self-dual codes over GR(p2,2) of
length 4.
We are now focusing on the classification of free self-dual codes
over GR(pe, r) and q-adic integers of moderate lengths.
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Galois rings

Definition (Z.-W. Wan)

A Galois ring is defined to be a finite ring with identity 1 such that the
set of its zero divisers with 0 added forms a principal ideal 〈p〉 for
some prime number p.

The ring Z9 = {0,1,2,3,4,5,6,7,8} have the principal ideal
〈3〉 = {0,3,6}. Thus the ring Z9 is a Galois ring.
The ring Zpe is a Galois ring with pe elements.
The finite field Fpm is trivially a Galois ring with pm elements.
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Construction of a Galois ring

Theorem
Let r be a positive integer and h(X ) be a monic basic irreducible
polynomial in Zpe [X ] of degree r that divides X pr−1 − 1. The
polynomial h(X ) is chosen so that ζ = X + h(X ) is a primitive (pr−1)st
root of unity. Then a Galois ring of characteristic pe with (pe)r

elements, unique up to isomorphism, can be constructed as a ring

GR(pe, r) = Zpe [X ]/〈h(X )〉 ' Zpe [ζ].

If ζ ∈ GR(pe, r) is a primitive (pr − 1)st root of unity then the set
T = {0,1, ζ, . . . , ζpr−2} is called a Teichmüller set.
Elements of GR(pe, r) can be uniquely written as a p-adic sum
c0 + c1p + c2p2 + · · ·+ ce−1pe−1 with ci ∈ T .
Elements of GR(pe, r) can also be written in the ζ-adic
expansion b0 + b1ζ + · · ·+ br−1ζ

r−1 with bi ∈ Zpe .



Introduction Galois Rings Self-dual code over Galois rings The number of codes Classification Improvements

Construction of a Galois ring

Example

In MAGMA GR(33,3) ' Z33 [X ]/〈X 3 + 2X + 1〉 and we set
ζ = X + 〈X 3 + 2X + 1〉 and GR(33,3) ' Z33 [ζ].
Let α = 15 + 20ζ + 13ζ2 ∈ GR(33,3) ' Z33 [ζ] in the ζ-adic
expansion. Then α can be represented as a p-adic sum as

(2ζ + ζ2) + (2 + ζ2)3 + (1 + 2ζ + ζ2)9.

We usually compute elements in GR(pe, r) with ζ-adic
expansion.

α · ζ = 15ζ + 20ζ2 + 13ζ3

= 15ζ + 20ζ2 + 13(25ζ + 26)

= 14 + 16ζ + 20ζ2
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h(X ) of GR(p2,2) for each prime p ≤ 61 used in MAGMA

p h(X ) p h(X )

2 X 2 + X + 1 29 X 2 + 24X + 2
3 X 2 + 2X + 2 31 X 2 + 29X + 3
5 X 2 + 4X + 2 37 X 2 + 34X + 2
7 X 2 + 6X + 3 41 X 2 + 38X + 6

11 X 2 + 7X + 2 43 X 2 + 42X + 3
13 X 2 + 12X + 2 47 X 2 + 45X + 5
17 X 2 + 16X + 3 53 X 2 + 49X + 2
19 X 2 + 18X + 2 59 X 2 + 58X + 2
23 X 2 + 21X + 5 61 X 2 + 60X + 2
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Galois ring

Actually, Zpe is isomorphic to Galois ring of degree 1, denoted by
GR(pe,1) and GF (pr ) is isomorphic to GR(p, r).
The codes over finite chain rings have some good properties.
Every finite chain ring is a homomorphic image of some
polynomial ring GR(pe, r)[x ].
GF (pr ) can be lifted to GR(pe, r) and they have some similarities
in structure.
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Lattice of Galois rings

Fprs ←→GR(p2, rs) ←→GR(p3, rs) ←→· · · ←→ ??

| | | |
Fpr ←→GR(p2, r) ←→GR(p3, r) ←→· · · ←→ ?

| | | |
Fp 'Zp ←→ Zp2 ←→ Zp3 ←→· · · ←→ Zp∞
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p-adic integers

Definition
Fix a prime number p. The p-adic absolute value of a nonzero
r = pk a

b ∈ Q with (a,p) = (b,p) = 1 is defined by

|r |p = p−k .

| · |p is a legitimate absolute value and it defines a metric on Q. By
completing Q with respect to this metric, we obtain a field of p-adic
numbers

Qp = {
∞∑

i=n0

aipi | 0 ≤ ai < p, n0 ∈ Z} ⊃ Q.

Its subring

Op = {
∞∑
i=0

aipi | 0 ≤ ai < p} = {α ∈ Qp | |α|p ≤ 1}

is called the ring of p-adic integers.
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Facts

1 The ring of p-adic integers is a pricipal ideal domain.
2 |α + β|p ≤ max{|α|p, |β|p} non-archimedian
3 1 + 2 + 22 + 23 + · · · = 1

1−2 = −1 in Q2.
4 −1 is a square in Qp iff p ≡ 1 (mod 4).
5 (2121342303 · · ·(5))2 = −1 in Q5.
6 (2+5+2·52 +53 +3·54 +· · · )(2+5+2·52 +53 +3·54 +· · · )+1 = 0
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Finite extensions of p-adic numbers

Theorem
For each integer r ≥ 1, there exists a unique unramified extension
Qpr of degree r over Qp. It can be obtained by adjoining to Qp a
primitive (pr − 1)st root of unity.

Let ζ̄ be a generator of F∗pr . Then Fpr = Fp(ζ̄).

Let h̄(X ) be a minimal polynomial for ζ̄ over Fp. Lift h̄(X ) to any
h(X ) ∈ Op which is an irreducible polynomial over Op and Qp of
degree r .
If ζ is a root of h(X ), then Qp(ζ) = Qpr is an extension of degree
r .
The residue field K of Qp(ζ) contains a root ζ (mod p) of h̄(X ),
and K = Fpr .
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q-adic integers

Let q = pr and the ring of integers of K = Qq is denoted by Oq :

Oq = {a ∈ Qq | |a| ≤ 1}.

Oq is the set of all roots in Qpr of monic polynomials over Op. We call
Oq the ring of q-adic integers.

Theorem
Oq = Op[ζ], where ζ is a primitive (pr − 1)st root of unity.

Its unique maximal ideal is

Pq = pOq = {a ∈ Qpr | |a| < 1}.

We have that the residue field of Qpr is

Oq/Pq ' Fq .
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Hensel’s Lemma

Theorem (Hensel’s Lemma)

Let F (X ) ∈ Oq[X ]. Suppose that there exists an α1 ∈ Oq such that

F (α1) ≡ 0 (mod p), F ′(α1) 6≡ 0 (mod p)

Then there exists a unique α ∈ Opr such that α ≡ α1 (mod p) and
F (α) = 0.

The set of all (pr − 1)st root of unity in Oq together with 0

Tr = {0,1, ζ, · · · , ζpr−2}

is a complete set of coset representatives for Oq/(p).v Thus,
elements of Oq can be uniquely written as a formal infinite p-adic sum

c0 + c1p + c2p2 + · · ·+ ce−1pe−1 + · · ·

with ci ∈ Tr .
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Lattice of Galois rings

For each natural number e,

Oq/(pe) = Op[ζ]/(pe) = Zpe [ζ]/(pe) = GR(pe, r)

We have a projective systems

Fprs 'GR(p, rs) ←−GR(p2, rs) ←−GR(p3, rs) ←−· · · ←−Oprs

| | | |
Fpr 'GR(p, r) ←−GR(p2, r) ←−GR(p3, r) ←−· · · ←−Opr

| | | |
Fp 'Zp ←− Zp2 ←− Zp3 ←−· · · ←−Op
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Codes over Galois rings

A linear code over Galois ring GR(pe, r) of length n is a
GR(pe, r)-submodule of GR(pe, r)n

A code C over GR(pe, r) of length n has a generator matrix
permutation equivalent to the standard form

G =


Ik0 A01 A02 A03 . . . A0,e−1 A0e
0 pIk1 pA12 pA13 . . . pA1,e−1 pA1e
0 0 p2Ik2 p2A23 . . . p2A2,e−1 p2A2e
· · · · . . . · ·
0 0 0 0 . . . pe−1Ike−1 pe−1Ae−1,e

 ,

A code with this matrix is said to be of type

(1)k0 (p)k1 (p2)k2 · · · (pe−1)ke−1 .

k0 is called a free rank and a code of type 1k is called a free
code.



Introduction Galois Rings Self-dual code over Galois rings The number of codes Classification Improvements

Codes over Galois rings

The dual code C⊥ of C is

C⊥ = {v ∈ GR(pe, r)n | v ·w = 0 for all w ∈ C}.

A code C is called self-orthogonal if C ⊂ C⊥ and self-dual if
C = C⊥.
A code is called decomposable if the code is a direct sum of two
or more codes. If a code is not decomposable, it is called
indecomposable.
A generator matrix of decomposable code is a block matrix of its
subcodes.

G1 ⊕G2 =

(
G1 O
O G2

)
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Monomial transformation

Dn is a set of diagonal matrices:

Dn = {diag(γ1, γ2, · · · , γn) | γi ∈ GR(pe, r), γ2
i = 1}.

An element σ ∈ Sn and γ ∈ Dn acts on GR(pe, r)n by
v = (vσ(1), vσ(2), · · · , vσ(n))γ
The group of all monomial transformations Tn is defined by

Tn = {σγ | γ ∈ Dn, σ ∈ Sn}.

Two self-dual codes C and C′ are called equivalent if there exists
an element τ ∈ Tn such that Cτ = C′.
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Automorphisms of C

Aut(C) is the group of all automorphisms of C.
Permutation parts of C is p(C) = {σ | σγ ∈ Aut(C)}
sign parts of C is defined by s(C) = Aut(C) ∩ D.
|s(C)||p(C)| = |Aut(C)|.
We denote a automorphism group of C by

|s(C)|.p(C)

or we just denote the order as

|s(C)|.|p(C)|
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The number of self-orthogonal codes over GR(p, r)

Propostion (V. Pless, 1965)

Let σq(n, k) be the number of self-orthogonal codes of length n and
dimension k over Fq , where q = pm for some prime p and an integer
m. Then:

1 If n is even, q even,

σq(n, k) =
(qn−k − 1)

∏k−1
i=1 (qn−2i − 1)∏k

i=1(q i − 1)
,

2 If n is even, q odd,

σq(n, k) =
(qn−k − 1 − η((−1)n/2)(qn/2−k − qn/2))

∏k−1
i=1 (qn−2i − 1)∏k

i=1(q i − 1)
.

The term
∏k−1

i=1 (qn−2i − 1) is to be 1 when k = 1 and σq(n,0) = 1
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The number of self-orthogonal codes over GR(pe, r)

Next theorem is a generalization of the results on the number of
self-dual codes over Zps , which are published consecutively by
Gaborit (1996), Nagata et al.(2008, 2009), Balmaceda et al. (2008).

Theorem

The number of distinct self-dual codes over a Galois ring GR(p2, r)
for odd prime p is given by

Np2,2(n) =
∑

0≤k≤bn/2c

σpr (n, k)(pr )k(k−1)/2.

Particularly, the number of distinct free self-dual codes over a Galois
ring GR(pe, r) for odd prime p is given by

#pe,r (n) = σpr

(
n,

n
2

)
p(e−1)r n(n−2)

8 .
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The number of self-orthogonal codes over GR(pe, r)

Sketch of proof

A self-orthogonal code C0 over GR(p, r) with a generator matrix

G0 =
(
Ik A1 B1

)
is lifted to a self-dual code over GR(p2, r) with generator matrices

G =

(
Ik A1 B1 + pB2
O pIk1 pC1

)
Then, C1 is determined completely by G0 and B2 is chosen among
(pr )k(k−1)/2
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Possible length of self-dual codes over GR(pe, r)

Theorem (S.T. Dougherty et al., 2009)
1 If e is even, then there exist self-dual codes over GR(pe, r) for all

lengths.
2 If e is odd and the residue field GF (pr ) has characteristic 1

(mod 4), then there exist self-dual codes over GR(pe, r) for all
even lengths.

3 If e is odd and the residue field GF (pr ) has characteristic 3
(mod 4), then there exist self-dual codes over GR(pe, r) for all
even lengths a multiple of 4.
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Free self-dual codes over GR(pe, r) of length 4

Theorem
Let p 6= 2,3 and A4 be the alternating subgroup of S4. Then the free
self-dual code C with generator matrix (denoted by (a,b))(

1 0 a b
0 1 −b a

)
over GR(pe, r) is one of the following four classes :

Class (a,b) Aut(C)

(i) a2 + 1 = 0, b = 0 4.〈(13), (1234)〉
(ii) a6 = 1, a 6= ±1 2.A4

(iii) a = 1, b2 + 2 = 0 2.〈(13), (1234)〉
(iv) else 2.〈(12)(34), (13)(24)〉

Codes from classes (i), (ii), (iii) are unique, up to equivalence.
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Self-dual codes over GR(pe, r) of type 12p0

Theorem

Let N1,N2,N3,N4 be the number of class (i), (ii), (iii), (iv) self-dual
codes over GR(pe, r) of length 4 and rank 2, respectively.

pr (mod 24) N1 N2 N3 N4

1 1 1 1 per+per−r−26
24

5 1 0 0 per+per−r−6
24

7 0 1 0 per+per−r−8
24

11 0 0 1 per+per−r−12
24

13 1 1 0 per+per−r−14
24

17 1 0 1 per+per−r−18
24

19 0 1 1 per+per−r−20
24

23 0 0 0 per+per−r

24
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Self-dual codes over GR(pe, r) of type 12p0

Sketch of proof

Compute solutions of each polynomial over GR(p,1)[x ] ;
x2 + 1 = 0,x6 = 1 and x2 + 2 = 0. Then by Hensel’s lemma, we get
the solutions of each polynomial over GR(pe, r)[x ]. Checking the
mass formula, we obtain the number of inequivalent codes of each
class.

For example, we checked that
53 ≡ 5 (mod 24). Thus over GR(52,3) there are unique code of
class (i) and (56 + 53 − 6)/24 = 656 codes of class (iv).
74 ≡ 1 (mod 24). thus over GR(7,4) there are unique codes of
class (i),(ii),(iii) and (74 + 70 − 26)/24 = 99 codes of class (iv).
73 ≡ 7 (mod 24). Thus over GR(72,3) there are unique code of
class (ii) and (76 + 73 − 8)/24 = 4916 codes of class (iv).
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Self-dual codes over GR(p,1)

p (i) (ii) (iii) (iv)
5 (2, 0)
7 (2, 3)

11 (1, 3)
13 (5, 0) (3, 4)
17 (4, 0) (1, 7)
19 (7, 8) (1, 6)
23 (2, 8)
29 (12, 0) (2, 13)
31 (5, 6) (4, 13)
37 (6, 0) (10, 11) (3, 8)
41 (9, 0) (1, 11) (2, 6)
43 (6, 7) (1, 16) (2, 9)
47 (2, 18), (3, 15)
53 (23, 0) (3, 19), (4, 6)
59 (1, 23) (3, 7), (6, 9)
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Free self-dual codes over GR(p2,1)

p (i) (ii) (iii) (iv)

3 (1,4)
5 (7,0) (7,5)
7 (18,19) (2,17), (4,9)

11 (1,19) 5 codes
13 (70,0) (22,23) 7 codes
17 (38,0) (1,24) 12 codes
19 (68,69) (1,63) 15 codes
23 23 codes
29 (41,0) 36 codes
31 (439,440) 41 codes
37 (117,0) (581,582) 58 codes
41 (378,0) (1,71) 71 codes

Table: Self-dual codes over GR(p2, 1) of type 12p0.
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Self-dual codes over GR(p,2) of length 4

p (i) (ii) (iii) (iv)

5 (2, 0) (2ζ + 1, 2ζ + 2) (1, 2ζ + 4)
7 (ζ + 3, 0) (2, 3) (1, 3ζ + 2) 1 code
11 (4ζ + 3, 0) (ζ + 3, ζ + 4) (1, 3) 4 codes
13 (5, 0) (3, 4) (1, 4ζ + 11) 6 codes
17 (4, 0) (5ζ + 14, 5ζ + 15) (1, 7) 11 codes
19 (5ζ + 7, 0) (7, 8) (1, 6) 14 codes
23 (11ζ + 12, 0) (4ζ + 7, 4ζ + 8) (1, 9ζ + 14) 21 codes
29 (12, 0) (14ζ + 8, 14ζ + 9) (1, 7ζ + 26) 34 codes
31 (4ζ + 27, 0) (5, 6) (1, ζ + 30) 39 codes
37 (6, 0) (10, 11) (1, 6ζ + 25) 56 codes
41 (9, 0) (19ζ + 12, 19ζ + 13) (1, 11) 69 codes
43 (4ζ + 41, 0) (6, 7) (1, 16) 76 codes
47 (23ζ + 24, 0) (3ζ + 20, 3ζ + 21) (1, 20ζ + 27) 91 codes
53 (23, 0) (24ζ + 31, 24ζ + 32) (1, 23ζ + 7) 116 codes
59 (3ζ + 28, 0) (13ζ + 52, 13ζ + 53) (1, 23) 144 codes

Table: Self-dual codes of length 4 over GR(p, 2)



Introduction Galois Rings Self-dual code over Galois rings The number of codes Classification Improvements

Free self-dual codes over GR(2,2) and GR(4,2)

There exist two inequivalent self-dual codes over GR(2,2)(
1 0 1 0
0 1 0 1

)
: 〈(13), (1234)〉,(

1 0 ζ 1 + ζ
0 1 1 + ζ ζ

)
: A4.

There exist 2 inequivalent free codes over GR(4,2),(
1 0 ζ ζ + 1
0 1 3ζ + 3 ζ

)
: 2.A4,(

1 0 ζ ζ + 1
0 1 3ζ + 1 ζ

)
: 2.〈(12)(34), (14)(23)〉.

h(X ) = X 2 + X + 1 ∈ Z2e [X ].
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Free self-dual codes over GR(3,2) and GR(32,2)

There exist two inequivalent self-dual codes over GR(3,2)(
1 0 1 + ζ 0
0 1 0 1 + ζ

)
: 4.〈(13), (1234)〉,(

1 0 1 1
0 1 2 1

)
: 2.S4.

There exist 5 inequivalent free codes over GR(9,2),(
1 0 1 + ζ 0
0 1 0 1 + ζ

)
of class (i) since (1 + ζ)2 + 1 = 0,(

1 0 1 4
0 1 5 1

)
of class(iii) since 42 + 2 = 0

(1 + ζ,3ζ), (1 + ζ,3), (3ζ + 1,6ζ + 4) of class (iv).
h(X ) = X 2 + 2X + 2 ∈ Z3e [X ].
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Free Self-dual codes over GR(p2,2)

p (i) (ii) (iii) (iv)
3 (1 + ζ, 0) (1, 4) 3
5 (7, 0) (6 + 22ζ, 7 + 22ζ) (5ζ, 7) 26
7 (29ζ + 38, 0) (30, 31) (1, 45ζ + 37) 101

11 (92ζ + 80, 0) (89ζ + 69, 89ζ + 70) (1, 19) 614
13 (70, 0) (146, 147) (1, 43ζ + 89) 1196
17 (38, 0) (226ζ + 218, 226ζ + 219) (1, 24) 3491
19 (252ζ + 102, 0) (68, 69) (1, 63) 5444
23 (34ζ + 357, 0) (441ζ + 398, 441ζ + 399) (1, 515ζ + 382) 11681

Table: Self-dual codes of freerank 2 and length 4 over GR(p2, 2)
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Types of self-dual codes over GR(p2, r) of length 4

1 Type of 10p4 (Trivial code).

pI4 : 16.S4

2 Type of 12p0 (Free code).(
1 0 a b
0 1 −b a

)
3 Type of 11p2. 1 a b c

0 p 0 − a
c p

0 0 p − b
c p


Note that there are more types of codes over GR(pe, r) as e and n grows.
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Mass formula of self-dual codes over GR(p2,1) of length 4

Np2,1(4) = σp(4,0)p0 + σp(4,1)p0 + σp(4,2)p1

= 1 + (p + 1)2 + 2(p + 1)p
= 3p2 + 4p + 2

=
∑
C

24 × 4!

|Aut(C)|

# of the trivial self-dual code pI4 : σp(4,0)p0 = 1
# of the self-dual codes of type 11p2 : σp(4,1)p0 = (p + 1)2

# of the self-dual codes of type 12 : σp(4,2)p0 = 2(p + 1)p
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Self-dual codes over GR(p2, r) of free rank 1

Lemma (Park and Choi, 2017)

Let p be a odd prime. Then a self-dual code C over GR(p2, r) of free
rank 1 of length n has a generator matrix in the standard form ;

1 = a1 a2 a3 · · · an−1 an + pb1
0 p 0 · · · 0 pb2
0 0 p · · · 0 pb3
...

...
...

. . .
...

...
0 0 · · · 0 p pbn−1

 (1)

where ai ’s, bj ’s are in T and
1 an + pb1 is a unit in GR(p2, r),
2 bk = −ak a−1

n for k ≥ 2.

(1,a2,a3, · · · ,an) ∈ GR(p, r)n of rank 1 determines the self-dual
codes over GR(p2, r) of free rank 1.
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Self-dual codes over GR(p2, r) of free rank 1

Corollary

There is an one-to-one correspondence upto equivalence between
the set of self-dual codes over GR(p2, r) of free rank 1 and the set of
self-orthogonal codes over GR(p, r) of rank 1.

Corollary

Let C be a self-dual code GR(p2, r) of free rank 1 and Res(C) the
residue code of C. Then, Aut(C) = Aut(Res(C)).
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Self-dual codes over GR(p2, r) of free rank 1

Theorem (Park and Choi, 2017)

Let C be a code over GR(p, r) of rank 1 of length 4 with generator
matrix

(
a1 a2 a3 a4

)
and (ij), (ijk) be elements in S4 and

ω ∈ GR(p, r) such that ω6 = 1, ω 6= ±1.
1 If a2

i = a2
j , then (ij) ∈ p(C).

2 If (ij) ∈ p(C) and a2
i 6= a2

j , then a2
i = −a2

j and all the other
elements except ai and aj are zero.

3 If (ijk) ∈ p(C) and 〈(ijk), (ij)〉 * p(C), then a2
j = ω2a2

i , a2
k = ω4a2

i
and the other element except ai ,aj and ak is zero.

4 If p is odd and the number of ai ’s which are zero is m, then
|s(C)| = 21+m.
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Self-dual codes over GR(p2,1) of type 11p2

Theorem (Park and Choi, 2017)

Let p 6= 2,3. Then self-dual codes (a,b, c) of rank 3 is equivalent to
one of the following inequivalent codes :

Class (a,b, c) Aut((a,b, c))
(i) a = b = 0 8.〈(14), (23)〉
(ii) b = 0, a6 ≡ 1 and a2 6= 1, c2 6= 1 4.〈(124)〉
(iii) a2 = 1,b = 0 4.〈(12)〉
(iv) b = 0,a 6= 0,a3 6= ±1, c3 6= ±1, a2 6= c2 4.〈(1)〉
(v) a2 ≡ 1 6= b2 ≡ c2 2.〈(1324), (12)〉
(vi) a2 ≡ b2 ≡ 1 2.S3

(vii) a2 ≡ 1,b2 6= ±1, c2 6= ±1 2.S2

(viii) a2 ≡ −1,b2 6= ±1 and b4 6= −1 2.〈(1), (14)(23)〉
(ix) a2 ≡ −1,b2 6= ±1 and b4 ≡ −1 2.〈(1243)〉
(x) 1,a2,b2, c2 are distinct, a2,b2, c2 6= −1 2.〈(1)〉



Introduction Galois Rings Self-dual code over Galois rings The number of codes Classification Improvements

Self-dual codes over GR(p2,1) of type 11p2

Theorem (Park and Choi, 2017)

For p 6= 2,3, let N1,N2, · · · ,N10 be the number of class (i), (ii), · · · , (x)
self-dual codes over GR(p2,1), respectively. These numbers are
determined as follows.

p(24) N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

1 1 1 1 p−25
24 1 1 p−17

8
p−9

8 1 (p+1)2−28p+216
192

5 1 0 0 p−5
24 1 0 p−5

8
p−5

8 0 (p+1)2−28p+104
192

7 0 1 0 p−7
24 0 1 p−7

8 0 0 (p+1)2−16p+48
192

11 0 0 1 p−11
24 0 0 p−3

8 0 0 (p+1)2−16p+32
192

13 1 1 0 p−13
24 1 1 p−13

8
p−5

8 0 (p+1)2−28p+168
192

17 1 0 1 p−17
24 1 0 p−9

8
p−9

8 1 (p+1)2−28p+152
192

19 0 1 1 p−19
24 0 1 p−11

8 0 0 (p+1)2−16p+96
192

23 0 0 0 p+1
24 0 0 p+1

8 0 0 (p+1)2−16p−16
192
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Self-dual codes over GR(p2,1) of type 11p2

There exists unique self-dual code over GR(4,1) of type 11p2.

(1,1,1) =

1 1 1 1
0 2 0 2
0 0 2 2


with automorphism S4. (a.k.a. the Klemm code)
There exists unique self-dual code over GR(9,1) of type 11p2.

(1,0,4) =

1 1 0 4
0 3 0 6
0 0 3 0


with automorphism 4.〈(12), (124)〉
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Self-dual codes over GR(p2,1) of type 11p2

p2 (i) (ii) (iii) (iv) (v)

52 (0,0,7) (1,2,12)

72 (2,0,17)

112 (1,0,19)

132 (0,0,70) (3,0,43) (1,5,34)

172 (0,0,38) (1,0,24) (1,4,72)

192 (7,0,46) (1,0,63)

232 (2,0,169)

292 (0,0,41) (2,0,71) (1,12,70)

312 (5,0,161) (4,0,142)

372 (0,0,117) (10,0,248) (3,0,510) (1,6,228)

Table: Cases 1 to 5 of self-dual codes of type 11p2 over GR(p2, 1)
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Self-dual codes over GR(p2,1) of type 11p2

p2 (vi) (vii) (viii) (ix) (x)

72 (1, 1, 12)
112 (1, 2, 29)
132 (1, 1, 45) (5, 6, 48)
172 (1, 6, 110) (4, 5, 139) (4, 8, 53)
192 (1, 1, 137) (1, 5, 50) (2, 3, 104)

232
(1, 3, 239)
(1, 6, 56)
(1, 7, 100)

(2, 4, 212)

292
(1, 2, 136)
(1, 6, 181)
(1, 11, 333)

(12, 13, 47)
(12, 14, 325)
(12, 19, 149)

(3, 5, 96)

312 (1, 1, 82)
(1, 2, 98)
(1, 3, 446)
(1, 9, 107)

(2, 44, 234)
(2, 9, 289)
(3, 8, 53)

372 (1, 1, 206)
(1, 3, 64)
(1, 5, 618)
(1, 9, 425)

(6, 7, 143)
(6, 8, 248)
(6, 9, 609)
(6, 12, 298)

(2, 5, 231)
(2, 13, 97)
(3, 4, 495)

Table: Case 5 to 10 of self-dual codes of type 11p2 over GR(p2, 1)
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Self-dual codes over GR(p2,2) of type 12p0

Np2,2(4) = σp2 (4,0)p0 + σp2 (4,1)p0 + σp2 (4,2)(p2)1

= 1 + (p2 + 1)2 + 2(p2 + 1)p2

= 3p4 + 4p2 + 2

For example, 3 · 234 + 4 · 232 + 2 = 841,641 self-dual codes over
GR(232,2) exist.
A self-dual code over GR(232,2) has 238 = 78,310,985,281
codewords.
We show that there are 13,228 equivalent classes.
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Self-dual codes over GR(p2,2) of type 11p2

Theorem
For p 6= 2,3, let N1,N2, · · · ,N10 be the number of class (i), (ii), · · · , (x)
self-dual codes over GR(p2,2), respectively. These numbers are
determined as follows.

Class N4 N7 N8 N10

# p2−25
24

p2−17
8

p2−9
8

(p2+1)2−28p2+216
192

and N1 = N2 = N3 = N5 = N6 = N9 = 1
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Self-dual codes over GR(p2,2) of type 11p2

Note that there exist two self-dual code over GR(4,2) of type 11p2.

(1,1,1) : 8.S4,

(1,1,1 + 2ζ) : 8.S4,

and there exist four self-dual code over GR(9,2) of type 11p2.

(1,0,4) : 4.B6,

(0,0, ζ + 1) : 8.B′4,

(1, ζ + 1, ζ + 1) : 2.B′8,

(ζ, ζ + 1, ζ + 2) : 2.B2.
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Self-dual codes over GR(p2,2) of type 11p2

p2 (v) (vi) (vii) (viii)

52 (1, 2, 12) (1, 1, 6ζ + 12) (1, 2ζ, 2ζ + 3) (2, ζ, 2ζ), (2, ζ + 1, 2ζ + 2)

72 (1, ζ + 3, 8ζ + 24) (1, 1, 37)

(1, 3, 23ζ + 20)
(1, ζ + 2, 30ζ + 10)
(1, ζ + 4, 30ζ + 23)
(1, 3ζ + 1, 24ζ + 24)

(2, ζ + 3, 23ζ + 20)
(ζ, ζ + 3, 17ζ + 31)

(ζ + 1, ζ + 3, 30ζ + 28)
(ζ + 2, ζ + 3, 43ζ + 39)
(ζ + 3, 2ζ + 2, 45ζ + 35)

112 (1, 4ζ + 3, 59ζ + 36) (1, 1, 57ζ + 18) 13 codes 14 codes

132 (1, 5, 135) (1, 1, 45) 19 codes 20 codes

172 (1, 4, 72) (1, 1, 126ζ + 141) 34 codes 35 codes

192 (1, 11ζ + 12, 57ζ + 173) (1, 1, 137) 43 codes 44 codes

232 (1, 11ζ + 12, 57ζ + 173) (1, 1, 353ζ + 268) 64 codes 65 codes

Table: Self-dual codes of type 11p2 over GR(p2, 2)(p < 29)
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Self-dual codes over p-adic numbers of length 4

The preivous results can be extended for the self-dual codes over
p-adic integer rings Zp∞ and, hopefully, over q-adic integer rings.

Theorem (Dougherty and Park, 2006)

If C is a self-dual code of length n over Zp∞ then C has type 1
n
2 .

With this theorem and Helsel’s lemma, we can see that there exist
four classes of self-dual codes over Zp∞ of length 4 as same as the
case over Zp. Especially, there are infinitely many inequivalent codes
of class (iv).
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Examples of self-dual codes over Zp∞

Over Z3∞ there exists a unique self-dual codes of class (iii)(
1 0 1 b
0 1 −b 1

)
where b2 + 2 = 0.
b = 112212 · · ·(3) = 1 + 1 · 3 + 2 · 32 + 2 · 35 + 1 · 37 + 2 · 311 + · · ·
Over Z7∞ there exists a unique self-dual code of class (ii)(

1 0 a b
0 1 −b a

)
where a2 + b2 + 1 = 0, a6 = 1 and a2 6= 1.
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Self-dual codes over Z73∞ of length 4

p = 73 is the smallest prime which gives examples of self-dual codes
over Zp∞ in all classified classes.

Unique free code of Class (i)
a = (27, 62, 28, 56, 58, 52, 51, 21, 11, 56, 39, 27, 47, 1, 67, 3, 68, 25, . . . )
b = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . . )

Unique free code of Class (ii)
a = (8, 30, 54, 57, 49, 56, 69, 62, 19, 51, 66, 22, 51, 18, 2, 40, 14, 48, . . . )
b = (9, 30, 54, 57, 49, 56, 69, 62, 19, 51, 66, 22, 51, 18, 2, 40, 14, 48, . . . )

Unique free code of Class (iii)
a = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . . )
b = (12, 6, 41, 58, 55, 49, 36, 27, 5, 35, 34, 70, 30, 27, 13, 39, 25, 63, . . . )

One of infinitely many free codes of Class (iv)
a = (17, 60, 35, 42, 26, 40, 66, 52, 39, 29, 60, 45, 29, 37, 4, 7, 29, 23, . . . )
b = (32, 34, 2, 9, 29, 16, 42, 56, 67, 27, 33, 58, 38, 22, 69, 47, 47, 12, . . . )

Here a p-adic integer
∑∞

i=0 aipi is expressed as an infinite sequence (ai).
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Free self-dual codes of length 6 - decomposable cases

Decomposable free self-dual codes C of length 6 with generator
matrix (denoted by D(a,b, c))1 0 0 0 0 a

0 1 0 b c 0
0 0 1 −c b 0


over GR(p,1) is one of the following four classes :

Class D(a,b, c) |s(C)|.|p(C)|
(i) a2 + 1 = 0, c2 + 1 = 0,b = 0 8.48
(ii) a2 + 1 = 0,b6 = 1,b2 6= 1 4.24
(iii) a2 + 1 = 0,b = 1, c2 + 2 = 0 4.16
(iv) else 4.8

Codes from classes (i), (ii), (iii) are unique, up to equivalence.
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Free self-dual codes of length 6 - decomposable cases

The number of class (i), (ii), (iii), (iv) decomposable free self-dual
codes C over GR(pe, r) of length 6

pr (mod 24) N1 N2 N3 N4

1 1 1 1 per+per−r−26
24

5 1 0 0 per+per−r−6
24

13 1 1 0 per+per−r−14
24

17 1 0 1 per+per−r−18
24
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Free self-dual codes of length 6 -Indecomposable cases

Propostion
Let

G =
(
In A

)
be a standard generator matrix of a self-dual code over GR(p, r) of
length 6. Then, G is decomposable iff A has at least two zero
elements.

Sketch of proof1 0 0 0 0 a
0 1 0 b c d
0 0 1 e f g

⇒ 1 + a2 = 0,ad = ag = 0 Thus, d = g = 0.

Similarly, we can check all cases and ‘only if’ part is clear.

Thus indecomposable code has at most 1 zero in A. Indecomposable
codes of length 6 with no zero in A are all MDS.
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Free self-dual codes of length 6

Propostion

Let C be a self-dual code over GR(p, r) with1 0 0 0 b c
0 1 0 b −c2i bci
0 0 1 c bci −b2i


where i2 + 1 = 0. Then, (13)(24)(36) ∈ Aut(C).
If b = 1, then there is unique C with |Aut(C)| = 2.8 for p ≡ 1,17
(mod 24).

For example, over GR(89,1)(
1 0 0 0 1 40
0 1 0 1 21 64
0 0 1 40 64 34

)
and over GR(97,1) (

1 0 0 0 1 17
0 1 0 1 44 83
0 0 1 17 83 75

)
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Free self-dual codes of length 6

Propostion

Let C be a self-dual code over GR(p, r) with1 0 0 1 i i
0 1 0 i a −a− 1
0 0 1 i −a− 1 a


Then, |Aut(C)| = 2.24.

For example, over GR(89,1)(
1 0 0 1 34 34
0 1 0 34 27 61
0 0 1 34 61 27

)
and over GR(97,1) (

1 0 0 1 22 22
0 1 0 22 37 59
0 0 1 22 59 37

)
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Rigid codes

If a codes has a trivial automorphism group, it is called a rigid code.
p = 53 is the smallest prime which gives examples of rigid code over
GR(p, r): (

1 0 0 0 3 19
0 1 0 4 25 10
0 0 1 6 1 11

)
,
(

1 0 0 1 2 10
0 1 0 12 36 34
0 0 1 15 17 11

)
,
(

1 0 0 1 8 26
0 1 0 16 5 6
0 0 1 22 49 33

)
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Thank you!
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