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Introduction

A quadratic polynomial over a field F means

a1x2 + a2y2 + a3z2 + a4xy + a5xz + a6yz,

where ai ∈ F , i = 1, . . . ,6.

A conic means the zero set of a quadratic polynomial which is
absolutely irreducible (i.e., irreducible over the algebraic closure
of the ground field F ).

On the projcective plane over F , any two conics are projectively
equivalent to each other, i.e., there is a projective
transformation between them.



Relative position of a line and a conic
Relative position of a line and a circle

Relative position of two conics (over the algebraic closure)



Notations

Fq, the finite field with q elements

P2, the projective plane over the algebraic closure of Fq

For an algebraic set (the zero set of polynomials) X in P2,

X (Fq) := {(α, β, γ) ∈ X | α, β, γ ∈ Fq}, the set of Fq-points of X

Nq(X ) := #X (Fq), the number of Fq-points of X

For u, v ,w ∈ Fq, not all zero,
[u, v ,w ] := {(x , y , z) ∈ P2 | ux + vy + wz = 0}, an Fq-line.

θ2 := #P2(Fq) = q2 + q + 1, the number of Fq-points on the
plane which is equal to that of Fq-lines.



Preliminaries

1 Every Fq-line contains q + 1 Fq-points.
2 There are exactly q + 1 Fq-lines through any Fq-points,

whose union contains P2(Fq).
3 Every conic contains q + 1 Fq-points.
4 The number of Fq-points in the intersection of a line and a

conic is 0, 1, or 2. (Definition. A line ` is called a i-line of a
set S if |` ∩ S(Fq)| = i .)

5 For a conic C, |L0(C)| = q(q−1)
2 , |L1(C)| = q + 1, and

|L2(C)| = q(q+1)
2 , where Li(C) means the set of i-lines of

C. (A 1-line means a tangent line.)
6 For q ≥ 4, every 5 points, any three of them are not

collinear, determine a unique conic.
7 For even q, all q + 1 tangent lines to a conic C pass

through the common point N, which is called the nucleus
of the conic C.



Conics with the common nucleus

From now on, we only consider for even q = 2m.

We denote by C(a1,a2,a3,a4,a5,a6) the conic defined by the
quadratic equation

a1x2 + a2y2 + a3z2 + a4xy + a5xz + a6yz = 0.

1 The nucleus of the conic C(a1,a2,a3,a4,a5,a6) is
(a6,a5,a4).

2 We may let the equation of a conic with nucleus (0,0,1) is
a1x2 + a2y2 + a3z2 + xy = 0. (Here a3 6= 0, since the
polynomial is absolutely irreducible.)

3 The number of all conics with the common nucleus is
q2(q − 1).

4 The number of all conics on the projective plane over Fq is
q5 − q2.



Spectrum and Standard Equations

R. H. F. Denniston, R. Mathon and many researchers used
such conics to construct maximal arcs on the plane.

For a set S, we let si := |Li(S)|, the number of i-lines of S. The
sequence {si} is called the spectrum of S.
A set S is called an (n, r)-arc if |S| = n and r = max{i | si 6= 0}.
A set S is called a maximal (n, r)-arc if si = 0 for any 0 < i < r .

Standard equations for a set S

(1)
∑q

i=0 si = q2 + q + 1 (the number of all lines on the plane).
(2)

∑q
i=0 i · si = (q2 − q + 1) · (q + 1) (the sum of |` ∩ S| for all

lines on the plane).

(3)
∑q

i=2

( i
2

)
si =

(q2−q+1
2

)
(counting the number of elements in

the set {({P,Q},PQ) | P,Q ∈ S and P 6= Q} in two ways).



Zeros of a quadratic equation

We use the trace function Tr : Fq → F2 = {0,1} defined by

Tr(x) := x + x2 + x4 + · · ·+ x
q
2 .

Lemma.
(1) The quadratic equation t2 + t + δ = 0 over Fq has a solution

in Fq if and only if Tr(δ) = 0. In this case, it has 2 distinct
solutions t0 and 1 + t0 where
t0 = kδ2 + (k + k2)δ4 + · · ·+ (k + k2 + · · ·+ k

q
4 )δ

q
2 for an

element k ∈ Fq with Tr(k) = 1.
(2) In general, an equation at2 + bt + c = 0 with

a(6= 0),b( 6= 0), c ∈ Fq has a solution (actually 2 distinct
zeros) in Fq if and only if Tr(ac

b2 ) = 0.

(3) An equation at2 + bt + c = 0 with a(6= 0),b, c ∈ Fq has a
double zero in Fq if and only if b = 0.



Intersection of two conics with the common nucleus

We consider a family of q2(q − 1) conics with the common
nucleus N(0,0,1)

ax2 + by2 + λz2 + xy = 0 with a,b, λ ∈ Fq, λ 6= 0,

which we denote by Fabλ simply.

Lemma. Let Fabλ and Fa′b′λ′ be two distinct conics.
(1) If λ = λ′, then they have one common Fq-point of

intersection multiplicity 4.

(2) Let λ 6= λ′. If Tr( (aλ
′+a′λ)(bλ′+b′λ)

(λ+λ′)2 ) = 0, then they have two
common Fq-points of intersection multiplicity 2,
respectrively. If Tr( (aλ

′+a′λ)(bλ′+b′λ)
(λ+λ′)2 ) = 1, then they have no

common Fq-points.



Sum of two conics

For two conics Fabλ and Fa′b′λ′ with λ 6= λ′, we define another
conic as

Fabλ ⊕ Fa′b′λ′ := Fa⊕a′,b⊕b′,λ⊕λ′ ,

where a⊕ a′ = aλ+a′λ′
λ+λ′ , b ⊕ b′ = bλ+b′λ′

λ+λ′ , λ⊕ λ′ = λ+ λ′.

Lemma.
(1) If Fabλ and Fa′b′λ′ with λ 6= λ′ have no common Fq-points,

then Fabλ ⊕ Fa′b′λ′ has no common Fq-points with both of
them.

(2) If Fabλ and Fa′b′λ′ with λ 6= λ′ have two common Fq-points,
then Fabλ ⊕ Fa′b′λ′ contains those two common Fq-points.



Known Results of Denniston and Mathon

Theorem (Denniston, 1969) Let
φ(x , y) = ax2 + hxy + by2 ∈ Fq[x , y ] be irreducible over Fq. Let
H be an additive subgroup of Fq of order r . Then the set
{(x , y , z) | φ(x , y) ∈ H} is an ((r − 1)(q + 1) + 1, r)-arc, which
is maximal.

Theorem (Mathon, 2002) Let Tr(ab) = 1. Let H be an additive
subgroup of Fq of order r . Then the set SH = ∪λ∈HFabλ is an
((r − 1)(q + 1) + 1, r)-arc, which is maximal.

Theorem (Mathon, 2002) Let p(λ) =
∑d−1

i=0 aiλ
2i−1 and

q(λ) =
∑d−1

i=0 biλ
2i−1 be polynomials with coefficients in F2m .

For an additive subgroup A of order 2d in F2m let
F = {Fp(λ)q(λ)λ | λ ∈ A} be the set of conics with a common
nucleus F0. If Tr(p(λ)q(λ)) = 1 for every λ ∈ A then the set of
points on all conics in F together with F0 form a maximal
2m+d − 2m + 2d ,2d)-arc K in P2(F2m). If both p(λ), q(λ) are of
degree ≤ 1 in λ then K is a Denniston maximal arc.



Some Notations

We consider more family of conics or lines related to such
conics.

To determine disjointness of two conics Fabλ,Fa′b′λ′ with λ 6= λ′

or that of a conic Fabλ and a line [u, v ,w ] with w 6= 0, we define
the notations.

DCC(Fabλ,Fa′b′λ′) :=
(aλ′ + a′λ)(bλ′ + b′λ)

(λ+ λ′)2 .

DLC([u, v ,w ],Fabλ) :=
(aw2 + λu2)(bw2 + λv2)

w4 .

Note that a line [u, v ,0] pass through the nucleus N(0,0,1), so
it is tangent to every conic Fabλ. Also note that if λ = λ′, then
Fabλ and Fa′b′λ′ meet at a Fq-point of intersection multiplicity 4.



Union of disjoint conics with the common nucleus

Theorem. Let λ, λ1, λ2 ∈ Fq \ {0} and λ1 6= λ2.

(1) DCC(Fa1b1λ1 ,Fa2b2λ2) = DCC(Fa1b1(λ1λ),Fa2b2(λ2λ)).
(2) DCC(Fa1b1λ1 ,Fa2b2λ2)+DCC(Fa1b1λ2 ,Fa2b2λ1) = a1b1+a2b2.
(3) DCC(Fa1b1λ1 ,Fa2b2λ2) = DCC(Fb1a1λ1 ,Fb2a2λ2).
(4) DLC([u, v ,w ],Fabλ) = DLC([v ,u,w ],Fbaλ).

Corollary.
(1) Let Tr(a1b1) = Tr(a2b2). Then Fa1b1λ1 ∩ Fa2b2λ2 = ∅ if and

only if Fa1b1λ2 ∩ Fa2b2λ1 = ∅
(2) Let Tr(a1b1) 6= Tr(a2b2). Then Fa1b1λ1 ∩ Fa2b2λ2 = ∅ if and

only if Fa1b1λ2 ∩ Fa2b2λ1 6= ∅



Automorphisms fixing N(1,0,0)
Let M ∈ PGL(3,q) and φM be an automorphism determined by
the matrix M. We consider the automorphisms fixing the
nucleus N(0,0,1) hence it preserves the family of conics with
nucleus N.
{M ∈ PGL(3,q) | φM(0,0,1) = (0,0,1)} =
c11 c12 0

c21 c22 0
c31 c32 1

 | c11c22 + c12c21 6= 0

. For

M =

c11 c12 0
c21 c22 0
c31 c32 1

, let φ = φM and

d = det(M) = c11c22 + c12c21 6= 0 . Then

φ(x , y , z) = (c11x + c12y , c21x + c22y , c31x + c32y + z).

φ([u, v ,w ]) = [u′, v ′,w ′], where
u′ = d−1(c22u + c21v + (c21c32 + c22c31)w)

v ′ = d−1(c12u + c11v + (c11c32 + c12c31)w)

w ′ = w
.



Automorphisms fixing N(1,0,0)

φ(Fabλ) = Fa′b′λ′ where
a′ = d−1(ac2

22 + bc2
21 + λ(c21c32 + c22c31)

2 + c22c21)

b′ = d−1(ac2
12 + bc2

11 + λ(c11c32 + c12c31)
2 + c12c11)

λ′ = dλ
.

φ−1 = φM−1 where

M−1 = d−1

 c22 c12 0
c21 c11 0

c21c32 + c22c31 c11c32 + c12c31 d


φ({(x , y , z) | f (x , y , z) = 0}) = {φ(x , y , z) | f (x , y , z) = 0}
= {(x ′, y ′, z ′) | f (φ−1(x ′, y ′, z ′)) = 0}

= {(x ′, y ′, z ′) | f (c22x ′ + c12y ′

d
,
c21x ′ + c11y ′

d
,

(c21c32 + c22c31)x ′ + (c11c32 + c12c31)y ′

d
+ z ′) = 0}



Examples of automorphism groups

Aut(F001) = {M ∈ PGL(3,q) | φM(F001) = F001} =
 c11 c12 0

c21 c22 0√
c11c21

√
c12c22 1

 | c11c22 + c12c21 = 1

.

Note that
√

a = a
q
2 .

Let ε ∈ Fq such that Tr(ε) = 1.
Aut(F1ε1) = {M ∈ PGL(3,q) | φM(F1ε1) = F1ε1} =
 c11 c12 0

c21 c22 0√
1 + c11c21 + c2

11 + εc2
21

√
ε+ c12c22 + c2

12 + εc2
22 1

 | c11c22 + c12c21 = 1

.

|Aut(F001)| = |Aut(F1ε1)| =
(q2 − 1)(q2 − q)

q − 1
= (q + 1)q(q − 1)

= (the number of ordered triples of distinct points on a conic).



The set of all 0-lines of a conic

Fix an element ε ∈ Fq such that Tr(ε) = 1.

L0(F1ε1) = {[u, v ,w ] | [u, v ,w ] is a 0-line of F1ε1}
= {[u, v ,w ] | (u, v ,w) ∈ ∪µ∈Tr−1(0)Fε1µ}
= (∪µ∈Tr−1(0)Fε1µ)

∗,

where S∗ = {[u, v ,w ] | (u, v ,w) ∈ S}.
Fε10 = {(0,0,1)} means the nucleus and the q

2 − 1 conics in
{Fε1µ | µ ∈ Tr−1(0) \ {0}} are mutually disjoint and
∪µ∈Tr−1(0)Fε1µ forms a maximal (q(q−1)

2 , q
2 )q-arc.

L0(F1ε1) is invariant under automorphisms of the conic F1ε1,
and itself is a Aut(F1ε1)-orbit. Indeed, for any line `0 ∈ L0(F1ε1),
the order of Stab`0(Aut(F1ε1)) is 2(q + 1) and
|Aut(F1ε1)|

2(q+1) = q(q−1)
2 = |L0(F1ε1)|.

Thus K = ∪µ∈Tr−1(0)Fε1µ is expressed as a union of q
2 − 1

conics and their common nucleus N ′ for any point N ′ ∈ K.



The set of all 0-lines of a conic Fabλ

Case 1. Tr(ab) = 1.
L0(Fabλ) = {[u, v ,w ] | (u, v ,w) ∈ ∪µ∈ 1

λ
Tr−1(0)Fbaµ}

= (∪µ∈ 1
λ

Tr−1(0)Fbaµ)
∗.

Fab0 = {(0,0,1)} means the nucleus and the q
2 − 1 conics in

{Fbaµ | µ ∈ Tr−1(0) \ {0}} are mutually disjoint and
K1 = ∪µ∈Tr−1(0)Fbaµ forms a maximal (q(q−1)

2 , q
2 )q-arc.

Case 2. Tr(ab) = 0.
L0(Fabλ) = {[u, v ,w ] | w 6= 0, (u, v ,w) ∈ ∪µ∈ 1

λ
Tr−1(1)Fbaµ}

= (∪µ∈ 1
λ

Tr−1(1)Fbaµ \ Fba0)
∗.

The q
2 conics in {Fbaµ | µ ∈ 1

λTr−1(1)} contain two common
points Fba0 = {P1,P2} and K0 = ∪µ∈ 1

λ
Tr−1(1)Fbaµ \ {P1,P2}

forms a maximal (q(q−1)
2 , q

2 )q-arc.

Since any two conics are projectively equivalent to each other,
K0 and K1 are also projectively equivalent.



Common 0-lines of conics

Let H be a subspace of Fq over F2 with q = 2m.

Let H⊥ = {x ∈ Fq | Tr(λx) = 0 for all λ ∈ H}.
Then dimF2 H + dimF2 H⊥ = dimF2 Fq = m.

If Tr(ab) = 1 then L0(∪λ∈HFabλ) = (∪µ∈H⊥Fbaµ)
∗, where

S∗ = {[u, v ,w ] | (u, v ,w) ∈ S}.
In general, if J is a subset of Fq, then
L0(∪λ∈JFabλ) = L0(∪λ∈〈J〉Fabλ), where 〈J〉 means the
subspace spanned by J.



The set of conics disjoint from a line

Consider two projections π1 and π2 from the set
H = {(C, `) | C is a conic and C ∩ ` = ∅} to the set of conics
and the set of lines, respectively.
Then

∣∣π−1(C)
∣∣ = |L0(C)| = q(q−1)

2
and
|H| = (q5 − q2) · q(q−1)

2 .

Hence
∣∣∣π−1

2 (`)
∣∣∣ = |H|

q2+q+1 = q3(q−1)2

2 .

We can count by another way.

Note that Fabλ ∩ [0,0,1] = ∅ if and only if Tr(ab) = 1. Thus
|{Fabλ | Fabλ ∩ [0,0,1] = ∅}| = (q − 1)2 · q

2 and the number of
points outside the line [0,0,1] is q2, we also get the number of
conics disjoint from a line is q3(q−1)2

2 .



The set of conics Fabλ disjoint from F001

Since DCC(F001,Fabλ) =
ab

(1+λ)2 , we have

{Fabλ | F001 ∩ Fabλ = ∅} = {Fabλ | Tr(
ab

(1 + λ)2 ) = 1}

= {Fabλ | λ 6= 0,1 and ab = (1 + λ)2µ for some µ ∈ Tr−1(1)}
= {Fabλ | λ 6= 0,1 and (a,b,1 + λ) ∈ F00µ with µ ∈ Tr−1(1)}

Thus the number of conics Fabλ disjoint from F001 is
(q − 2) · (q + 1− 2) · q

2 = q(q−1)(q−2)
2 .



The set of all conics passing through through given i
points

Let mi (i ≥ 1) be the number of conics passing given i points,
any three of which are noncollinear (if i ≥ 3). By convention, we
let m0 be the number of all conics. Then we have the following.

m0 = q5 − q2.
m1 = q4 − q2.
m2 = q3 − q2.
m3 = (q − 1)2.
m4 = q − 2.
m5 = 1.

m6 = · · · = mq+1 =

{
1, if those i points are on a conic.
0, otherwise.



The set of all conics with given points on a conic C0

Let C0 be a conic. We find the number of conics which have
exactly i points of C0. For a given i points of C0, let ni be the
number of conics C such that C ∩C0 is exactly the given points.
Then we obtain ni ’s as follows.

nq+1 = 1.
n5 = · · · = nq = 0.
n4 = m4 − 1 = q − 3.

n3 = m3 −
(

q − 2
1

)
n4 − 1 = 3q − 6.

n2 = m2−
(

q − 1
1

)
n3−

(
q − 1

2

)
n4−1 = 1

2(q
3−2q2 +7q−8).

n1 = m1 −
(

q
1

)
n2 −

(
q
2

)
n3 −

(
q
3

)
n4 − 1

= 1
6(q − 1)(2q3 + 5q2 − 6q + 6).

n0 = m0 −
(

q + 1
1

)
n1 −

(
q + 1

2

)
n2 −

(
q + 1

3

)
n3 −

(
q + 1

4

)
n4 − 1

= 1
8q · (3q2 − q + 2)(q − 1)2.



The set of all conics C with |C ∩ C0| = i

Let Ni be the number of conics C such that |C ∩ C0| = i . Then
we obtain the following.
N0 = n0 = 1

8q · (3q2 − q + 2)(q − 1)2.

N1 =

(
q + 1

1

)
· n1 = 1

6(q + 1)(q − 1)(2q3 + 5q2 − 6q + 6).

N2 =

(
q + 1

2

)
· n2 = 1

4(q + 1)q(q3 − 2q2 + 7q − 8).

N3 =

(
q + 1

3

)
· n3 = 1

2(q + 1)q(q − 1)(q − 2).

N4 =

(
q + 1

4

)
· n4 = 1

24(q + 1)q(q − 1)(q − 2)(q − 3).

N5 = · · · = Nq = 0.
Nq+1 = 1.

Remark. The number of conics disjoint from a given conic is
N0 = 1

8q · (3q2 − q + 2)(q − 1)2.
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Thank you for your attention!!!


