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Introduction

Codes over Z,

Zy ={0,1,2,3}. Codes ) #C C Z}.

A subgroup C of (Z},+) is called a linear codes over Z4 of
length n. If C has a minimum generator set with

> a generators of order 4; and

> 5 generators of order 2,

C is said to be of type 4%25. In this case, |C| = 220+5.

Cyclic codes over Z4 of length n: a linear code C over Z,4 of
length n satisfies

(Cn—1,¢0,C1, .- Cn—2) €C, Y(co,¢1,-..,¢n-1) €C.




Introduction

Gray map from Z4 onto 3

Define ¢ : Zy — F2 via

0+ 00, 1~ 01, 2+ 11, 3+ 10.

Define Lee weight on Z, by
wr(0) = wg(0,0) =0, wr(l) =wg(0,1) =1
wr(2) =wg(1,1) =2, wr(3) =wg(1,0) = 1.

Extend ¢ : Z4 — F3 to @ : Z} — F3" by

(ao,al, 500 an_l) — ((ﬁ(@o), ¢(a1), coog ¢(an_1)).
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Gray map from Z4 onto 3

The Gray map ® : Z} — IF%" is a bijection preserving distance
from (Z%, Lee distance) onto (F3", Hamming distance) and
preserves orthogonality.

For any code C C Z7, let D = ®(C) C F2". D is called the
binary image of C which is a binary code of length 2n. In
particular, we have

®(Ct) € Dt
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Gray map from Z4 onto 3

In particular, if C is a self-dual Z4-code of length n, the binary
image D = ®(C) is a binary self-dual code of length 2n.

Moreover, the Hamming weight distribution of D is the same as
the Lee weight distribution of C, i.e.,

Wi (x,v) = wiP(x,Y).
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A breakthrough in coding theory (cf. IEEE 1994)

In the early 1990s, a connection was made between linear codes
over Z, and non-linear binary codes in the landmark paper:

Calderbank, A.R., Hammons Jr., A.R., Kumar, P.V., Sloane, N.J.A.
and Solé, P.: The Z,-linearity of Kerdock, Preparata, Goethals, and
related codes, IEEE Trans. Inform. Theory 40 (1994), 301-319.

For an example, the binary images of the Z4-dual codes of the
Kerdock codes are Preparata-like codes, having essentially the
same properties as Preparata’s original codes.
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Constructing binary codes from Z4-codes

It has been an efficient way to construct good binary codes
from Z4-codes with certain special structures (e.g., cyclic codes
and self-dual codes over Zy).

Therefore, it is an meaningful topic to study linear codes over
Zy and Zyk (k> 3) with certain algebraic structures. For
example, cyclic codes, negacyclic codes, constacyclic codes,
quasi-cyclic codes, quasi-twisted codes, ......
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Constructing binary codes from Z4-codes

Compared with existing rich theory for binary cyclic codes,
there are a lot of work to do for cyclic codes over Zy4, especially,
for cyclic codes over Z, of even length.
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Our goals

Let n be odd. In this talk, we consider cyclic codes over Z4 of
length 4n:

e Give a explicit representation for every cyclic code over Z, of
length 4n and a complete classification for all these codes.

e Determine the dual code and its self-duality for every cyclic
code over Z,4 of length 4n.

e Provide an efficient encoder for any cyclic code over Z4 of
length 4n (and their binary images).




The existing results and methods

Cyclic codes over Z, of even length

Abualrub and Oehmk in [1] determined the generators for cyclic
codes over Z, for lengths of the form 2*, and Blackford in [2]
presented the generators for cyclic codes over Z, for lengths of
the form 2n where n is odd. The case for odd n follows from
results in [3] and also appears in more detail in [9].

[1] T. Abualrub and R. Oehmke, On the generators of Z4 cyclic codes of length 2¢,
IEEE Trans. IT 49 (2003).

[2] T. Blackford, Cyclic codes over Z4 of oddly even length, Discrete Appl. Math.
128 (2003).

[3] A. R. Calderbank and N. J. A. Sloane, Modular and p-adic cyclic codes, Des.
Codes Cryptogr. 6 (1995).

[9] V. S. Pless and Z. Qian, Cyclic codes and quadratic residue codes over Zu,
IEEE Trans. IT 42 (1996).



The existing results and methods

Des. Codes Cryptogr. 39 (2006)

Dougherty and Ling in [8] determined the structure of cyclic
codes over Z,4 for arbitrary even length giving the generator
polynomial for these codes, described the number and dual
codes of cyclic codes for a given length and presented the form
of cyclic codes that are self-dual.

[8] S. T. Dougherty and S. Ling, Cyclic codes over Z, of even length, Des.
Codes Cryptogr. 39 (2006), 127-153.
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Des. Codes Cryptogr. 39 (2006)

Cyclic codes over Zy of length 2¢n <— ideals of =2 Z“[z_}n. Let

Z4 [u}
R=———"".
(u?* —1)
By A Ry 1, where u = z" satisfies u2" =1 1in the
ring R, the following diagram commutes
Rlz] Z4[z]
(z"—u) (ka”—l)
\J \

n 2kn,
R — 7
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Des. Codes Cryptogr. 39 (2006)

Rz]

(27 —u)

Z4|z]
(a2tn—1)"

Ideals of the ring < ideals of

u-constacyclic codes over R of length n <— cyclic codes over
Zy4 of length 2Fn.

Then the ideals of < ZZ,fT[LI]D are determine by the following two
22Fn_
steps.
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Des. Codes Cryptogr. 39 (2006)

e For a positive integer m, and a monic basic irreducible
polynomial h,,(z) in Z4[z] of degree m that divides 22"~ — 1
define the following Galois ring:

7 [ﬂ?] m—1 '
< ) = {Z a;x' | ag,a1,...,am—1 € Zyg}
i=0

GR(4,m) = T

in which the arithmetic is done modulo h,,(z). Then
|GR(4,m)| = 4™.

)
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Des. Codes Cryptogr. 39 (2006)

Then determine all ideals and their annihilator of the ring

GR(4,m
I TRt
2F—1 .
= {Z a;w | ag, o1, . .., a1 € GR(4,m)}
=0

in which the arithmetic is done modulo u2" — 1 (see Lemma 2.3,
Proposition 2.5 and Theorem 2.6 in [8]). In particular,
|Ry(u,m)| = 42"
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Des. Codes Cryptogr. 39 (2006)

e Let M = min{l € ZT | 2! =1 (mod n)} and constructs a
Galois ring GR(4, M) of 4M elements. Let ¢ denote a primitive
nth root of unity in GR(4, M).

As n is odd, there exists integer n/, 1 < n/ < 2F — 1, such that

nn' =1 (mod 2%).
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Des. Codes Cryptogr. 39 (2006)

The map (DFT)

n—1
~ GR(4 mz) ul
7: i o g iml
(x pard (u
defined by
A(e(2)) = @75
is an injective homomorphism of rings from < 2Zk4[x] D into the
€T n__
direct product ring ;" % where
n—12F—1
A GR(4, m)[1]
! )
a=curt)=3 3 an™ e =g
=0 j5=0
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Des. Codes Cryptogr. 39 (2006)

e Let J denote a complete set of representatives of the

2-cyclotomic cosets modulo n and, for each o € 7, let my,
(2)

denote the size of the 2-cyclotomic coset J, ’ containing a, i.e.,

me = |JP| where J? = {2'a (mod n) |1=0,1,...}.

Then n = Y7 |J).
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Des. Codes Cryptogr. 39 (2006)

GR(4,m)[u] ~ GR(4 ma)|
(u2" ~1) (u2® ~1)

rings, for any c(z) = Y 1 szo cijattIn e Lalc]

<x2kn,1> :
Furthermore, in [8] the authors defined

It is known that 4 for every I € I as

1(e(@)) = (Ca)acs

where
12F—1
/C\ « Z Cl]un H—]Caz (4 ma)[u]‘
=0 j=0 ( ]->
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Des. Codes Cryptogr. 39 (2006)

[8] Theorem 3.2

Y/ GR(4,mq . .
The map ~ : <m2’“47[ﬁ1> — Docs w is a ring

isomorphism.

[8] Corollary 3.3

If C is a cyclic code of length 2¥n over Z,4, then C is isomorphic
to @,cs Ca, where, for each a € J, C, is an ideal in the ring

Ry(u,mq) = 7&2@?3’11[“].

There are 29 cases for all ideals and their annihilators of
Ry4(u,mq) ([8] Theorem 5.3) for arbitrary positive integer k.
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Des. Codes Cryptogr. 39 (2006)

In [8],
m;—1
GR(4,ml) = { Z CLjCJl ’ a; € Zy, j=0,1,....,m; — 1}.
j=0

Let o € J. For any [ € Jéz), where 0 <[ <n — 1, it need to

determine (4 Jia]
PN my
¢ € Ry(u,my) = ———
(2" — 1)
from GR(4 )ia]
. ,Me)|T
Cq & R4(U,ma) = <x2k—_1>
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Des. Codes Cryptogr. 39 (2006)

Then the inverse (determined by “Inverse discrete Fourier

9 = GR(4,mq)[u Zalx . .
transform”) 7! : @, <£2k_1)>[ L <x2,€47£_]1> of 7 is given by
=gz o —n/y —(n—=1)n/~y rn—
T (@adae) = ¥ (@O IEE)).
where ¢(¢!) = 32125 Gun¢™ (in which ¢, = &) and




The existing results and methods

Des. Codes Cryptogr. 39 (2006)

v (%)n 72" is defined by

u2f 1)
2k_1 il

\\ E ao’ju], ceey E an_l,ju]
j=0 7=0

= (@0,0,01,0,--+0n—1,0,00,1, 01,1, - - 0n—1,1,

<oy Aok _1,Q1 9k 1, .- 7a‘n—1,2k—1)'




The existing results and methods

Des. Codes Cryptogr. 39 (2006)

It may be some inconvenient to construct cyclic codes over Z4
of length 2Fn by use of the representation given in [8], as the
following lacks:

e How to determine
GR(4,ma) = {37 " a;¢% | aj € Zs, j=0,1,...,mq — 1}
explicitly?

e How to determine ¢; from ¢, € Ra(u, my) = Mmal)[x]’ for all
T

1e J?7
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[4] AAECC 27 (2016)

In fact,
Zaly)

(fa(y))’

where f,(y) is the minimal polynomial of (% in Z4[y] and

yn_1: H foz(y)

aceJ

GR(4,mq) =

Z4[x)

We can give an isomorphism from )
22Fn_

onto the direct ring

Haej Z4 [y]/<fa (>y)> directly.

(@ —

Hence we don’t need to determine ¢; from

Ca € Ry(u,my) = W for any [ € Jé ).
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AAECC 27 (2016)

Let A= Z4[y]> By 22" — 1 = y" — 1, where y = 22" in the

ring = = ml>7 we have the following diagram
Alz] _ Z4 ]
(22" —y) (x2tn—1)
4 4

k k
A¥ — 2y

[4] Y. Cao, Y. Cao and Q. Li, Concatenated structure of cyclic
codes over Z4 of length 4n, Appl. Algebra in Engrg. Comm.
Comput. 10 (2016), 279-302.
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AAECC 27 (2016)

C is a cyclic code Oj [l?ngth 2Fn, over Zy if and only if C is an

ideal of the ring g where
Z
A = a[y]
(y* = 1)

n—1
= {Z a;y’ | ag,ai,...,an—1 € Z4}
i=0

in which the arithmetic is done modulo y™ — 1.
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AAECC 27 (2016)

Assume
y' = 1= fi)fa(y) - fr (),
where f1(y), f2(y),- .., fr(y) are pairwise coprime monic basic
irreducible polynomials in Z4[y]. We assume deg(fi(y)) = m;
and denote
i—1
Zaly) _ [N :
Ri: :{ by] |b07b1a"'abmiflez4}

(fi(y)) ]z::() ’
in which the arithmetic is done modulo f;(y), for alli =1,... 7.
Then A= Ry X Ry X ... X R,.
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AAECC 27 (2016)

Let 1 <i <r and denote F;(y) = %;(—;)1 € Zyly].

Then there are polynomials u;(y),v;(y) € Z4ly] such that
wi(y)Fi(y) + vi(y) fi(y) = 1. Set €;(y) € A satisfying
ei(y) = wi(y)Fi(y) = 1 = vi(y) fi(y) (mod y™ —1).

and denote

A; = ei(y) A = <y;(;)1> A
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AAECC 27 (2016)

e A, is a cyclic code over Z4 of length n having parity check
polynomial f;(y), and |A;| = 4™,
e The map

@i+ b(y) = ei(y)b(y) (Vb(y) € R;)

is a ring isomorphism from the Galois ring R; onto the cyclic
code A;.
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AAECC 27 (2016)

Let
Rilz] 2k—1
W_{Zﬁjxﬂ | Bj € Ri,j=0,1,...,28 —1}
7=0

in which the arithmetic is done modulo z2° — Y.

e (; is a y-constacyclic code over R; = ﬁj&’% of length 2F if and

only if C; is an ideal of the ring %
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AAECC 27 (2016)

[4] Theorem 2.6

C is a cyclic code over Z4 of length 2¥n if and only if for each

1 <4 <r, there is a unique ideal C; of ( 12%;[1} % such that
z2" —y

C=A0,C)®... & (AO0,.Cr),

where
AiD%‘Ci = {(Soi(ﬁﬁ)a 902'(61)7 S 907?</82’“—1)
| (607 617 ° 00 aBZk—l) S CZ}
which is the concatenated code of A; and Cj, for all i =1,...,r.
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AAECC 27 (2016)

As n is odd, there is a positive integer e, 1 < e < n, such that
2%e = —1 (mod n). We denote

0i(y) = y© (mod fi(y)),

and set

m=y‘r—1=0;(y)r—1¢€ Rl[sc]/<:c:2]C —y).

From now on, let k = 2. Then all distinct y-constacyclic codes
C; over the Galois rm% R; of length 22 = 4, i.e. all distinct
ideals of the ring = [o P and their annihilating ideals are given

by one of the followmg 20 cases:
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AAECC 27 (2016)

[4] Theorem 3.3

case C; |C; | Ann(C;) Lo

1. {0y 1 (1) 1

2, (1) I (0) 1

3. (wdy (i =1,2) 22mi(4=3) | (n4=3 4 on?77) 2

4. (2) e (2) 1

5. (2n8) (s =1,2,3) U E=0) (nd=2 2) 3

6. (s +2hY (h € T,\ {0}) 26 (73 4 2mi (L4 mh)y 2™ — 1

7. (=2 + 2m;h 24m; (w2 4 2(1 + mih)) omi _ 1
(h € T; \ {0})

8. (n2 +2(h + 7;9)) DR (2 +2(1+ h +mig))  22Me —2mitl
(h € Ti\{0,1},9 € T3)

9. (72 +2(1 4 m3h)) DR (w2 + 27;h) PPE — il
(h € T; \ {0})

10. (3 + 27m;(3 + m;h)) P2 (m; + 2h) s — il

(h e 7 \ {0})
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AAECC 27 (2016)

Theorem

case C; |C5 ] Ann(C ) Lo

11. (73 + 2h) (h €Ti) P0G (73 + 2h) 2™

13. (n] +2m]7%) (j=2,3) 22mi(-D) <7rf 7y 2

14. (nd,2) (] =1,2,3) 2™ (8=3) (2xi=7) 3

15, (n?+2,2m) 25m; (%, 272) 1

16. (3 ,2n$) IS <7r.5 +2,2m;) 1

17. (71'33 + 2m;, 271'?) 23m; (72, 27;) 1

18. (w2, 2m;) I <7r5 + 2m;, 272) 1

19. (71'5 + 2h, 27;) 25m; (73 +2m;(1 + k), 27r1.2) om; 2
(h € T \ {0,1})

20. (71' + 27, h, 27-r ) 23m; <ﬂ-3 +2(1 + h), 2m;) om; _ o
(h'e T3 \ {0, 1))

where T; = {Zmlil tjyj ’ to,t1,-- -,

tm;—1 € {0,1}} and L¢ is

the number of codes in the same row.
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AAECC 27 (2016)

There are still some inconvenient to construct cyclic codes over
Z4 of length 4n by use of the representation given in [4], as we
have not to give the expression of

m=yr —1=0;(y)x — 1€ Ry[z]/{z* —v)

explicitly, for each different 7: 1 <17 <.
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AAECC 27 (2016)

When n = 7, we have 47 — 1 = f1(y) f2(y) f3(y) where

Al) =y -1 foly) =y’ + 2y +y + 3 and
f3(y) = y3 + 3y? + 2y + 3. In page 296 of [4], we have

b =x— 1€ Ryfz]/{z* —y);

> = (y? + 3y + 3)z — 1 € Ro[z]/(z* — y);

>3 = (2y? + 3y + 3)z — 1 € R3[x]/{z* — y).




Our new approach

Main idea

Recall that f;(y) is a monic basic irreducible divisor of y™ — 1 in
Za[y), deg(fi(y)) = my, and

In [4], we determine the ideals of <fjﬂ)

by the ring isomorphism

W —1) " (@t —y)

via u — y°z (mod f;(y)).
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Main idea

In fact, we have

Rilr) .  Zaz,y]  Z4la]

(t—y)  (fily),y—at)  (filzh))

Then will determine the ideals of the ring

Zy ]
Ki =
(fi(z?))
directly. Denote K; = <fF- 2(:[:)]4> = K; (mod 2) and

Ti = {X g tyad | t; €{0,1}, j=0,...,m; —1}.
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Properties of the ring KC; = < -

There exists a unique ordered pair (w;o(z), w;1(z)) of elements

4 ]F2 m] bk
in7; = TFo@) such that

fi(a:)4 = 2f7;(:c)2 (wi,o(x) + wzl(ac)?z(m)) in IC; and w; o(z) # 0.
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; 2 . N Z_l[l}
Ideals of the ring IC; = G

Let C be a nonzero ideal of ;. Then there is a unique ordered
pair (I, s) of integers, 0 < s <1 < 4, and there exists v(z) € K;
such that

C = (fi(z)' + 2v(z), 2f;(x)*) with |C| = 2mE=(H)),
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Ideals of the ring K; = %

Theorem 3.6

All distinct ideals of the ring KC; = <Z‘(‘ [x]» and their annihilating
ideals are given by the following table (10 cases)
L C; |Ci] Ann(C;)
1 e (0) 1 (1)
1 o (1) 28mi (0)
4 o (2f;(2)°) (s =10,1,2,3) 2mi(=2) | (fi(x)*=*,2)
3 o (fi(x)',2) (1=1,2,3) 2mi(B=D | (2F; () 0
2mi e (fi(z) + 2h(z)) 26ms (fi(2)? + 2 (@) (wi,0(x)
+9i(2) f;(2)))
_ ¥i(x) = w;1(z) + h(z)
2mi o (fi(@)? + 2h(x),2f,(x)) 2% (fi(2)® +2f; ()t (@),
in(z)2>
ti(z) = ws,0(x) + h(x)
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Ideals of the ring K; = Lalal_

{fi(z*)

Theorem 3.6 (continue)

L Ci _ ICs] | Ann(Ci)
4mi e (2(ho(z) + hi(z)f(x))  2%™ (2(5i,0($)+5i1( )fi(=))
+fi(2)?) +fi(x)?)

_ d;,5( )7w”(z)+h(z)
2 e (fi(x)® +2h(2), 2F;(x))  2*™i | (fi(@)® + 2h(x),2f;(2))

2mi e (fi(z)? + 2F;(z)h(2), 28mi | (fi(x)? + 2t;(2), 2f;(z))
2fi(z)?) ti(z) = wi,0(x) + h(z)

2™ e (fi(x)® +2f;(x)(wio(z)  22™1 | (fi(x) + 20:(2))
+h(z)fi(2))) Yi(z) = wi,1(®) + h(z)

where L is the number of ideals C in the same row and
h(z), ho(z), hi(z) € T;. Therefore, the number of ideals in K; is
equal to 9 4 5 - 2™ 4™,




Our new approach

Idempotents of the ring B = Z,[x]/{z' — 1)

By y" — 1= fi(y)f2(y) ... fr(y), we have
i — 1= (zH" — 1= fi(a) fo(z?) ... fr(z?).

As u;(y)Fi(y) + vi(y) fi(y) = 1, where F;(y) = % and
u;(y),vi(y) € Zaly], we define

ei(x) = wi(ah) Fi(z?) = 1 — vi(z?) fi(2?) (mod z*™ —1).

Then e1(x) + ...+ e (z) =1, e;(2)? = e;(x) and e;(x)e;(z) =0
for all 1 <i # j <r in the ring B = Zy[z]/{z* — 1).
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Cyclic codes over Z, of length 4n

C is a cyclic code over Z,4 of length 4n, i.e. C is an ideal of

Z4 [a;]

B=tm_1y

if and only if for each integer i, 1 < ¢ < r, there is a unique

ideal C; of the ring K; = <fZ_‘(‘:[Cﬁ])> such that

T T

C= @ei(a:)Ci = Zei(a:)Ci (mod %" — 1).

=1 =1
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Encoder for any cyclic code over Z, of length 4n

Lemma 4.1

Let C; = (fi(z)" + 2v(z), 2
v(r) €K;and 0< s <1<

a = (ap,ai, - » A(4—)ym 1)
b= (bo, b1, - -+ bi—sym, _1) l Sml) we define a map o by

fi(z)%) an ideal of K;, where
4. For any
c Z(4 l)m; and

(4—l)m;—1 (I—7)m;—1
)= > @l (f@) +20@)+ Y 2%a'Fi@)”
j=0 t=0

Then p is an isomorphism of additive groups from
Zz(flfl)mi X Zgis)mi onto C;. Hence C; is an abelian group of
type 4(@=Dmig(l—s)m;_
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Encoder for any cyclic code over Z, of length 4n

Theorem 4.2

Let C be a cyclic code over Zy of length 4n with canonical form
decomposition C = @._, C;, where C; = ¢;(z)C; C C and C; is
an ideal of KC; listed by Theorem 3.6. Then for each integer i,
1< <r, the type of C; is given by the following table:
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Encoder for any cyclic code over Z, of length 4n

Theorem 4.2 (continue)

Case C} the type of C;

1. (0) A5

2. (1) 44m: 90

3. (2f.(2)®) (s =0,1,2,3) 409(4=s)m;

4. (fi(x),2) (1=1,2,3) 44=lmiglm;

5. (fi(z) + 2h(z)) 43mi0

6. (fi(x)? +2n(x), 2f(x)) 42migmi

7. (fi(2)? + 2(ho(2) + ha(2) () 42ms20

8. (fi(2)® + 2h(z),2f;(2)) 4P

9. (fi(2)® + 2f;(2)h(2), 2f:(2)?) _ 4mign

10. (fi()® + 2f (@) (wio(z) + h(z) fi(x))) 4™2°
where h(z), ho(x), h1(z) € T;.
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Encoder for any cyclic code over Z, of length 4n

Theorem 4.2 (continue)

Precisely, an encoder of the subcode C; is given by the following;:
Case 1. C; = {0}.

Case 2. C; ={X ;"¢ " a;alei(x) | a; € Za, §=0,1,...,4m; —1}.

Case 3. C; = {X 45 9™ 7 26,2t F(2)ei(@) | bo, b1, - - bia—sym;—1 € L2}

Case 4. C; = {5 ™  aja fi(x) es(w) + 475 2buates(x) | a; €
ZLa, btEZQ,]—0,1,...,(4—l)m¢—1andt—O,l,...,lmi—l}.

Case 5. C; = {Z?:g_l ajz? (fi(z) + 2h(z)) ei(x) | a; € Za, 5 =0,1,2,...,
my; — 1}.
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Encoder for any cyclic code over Z, of length 4n

Theorem 4.2 (continue)
Case 6.

2m; —1 md;—1

¢ = {Z a;x 2 4 2h(z Z b’ f,(x)es (z)

|aj€Z4, be € Zo, j:O,l,...,2mi71andt:O,l,...,mifl}.

Case 7. C; = {szl a;x? (fi(z)? +2 (ho(z) + ha(z) f;(2))) ei(z) | a; €
Za, j=0,1,...,2m; —1}.

Case 8.
m;—1 2m;—1

G = {Za] 3 4 2n(x )+ Z 202" f; (x)es(x)
|ajEZ4, bt €Z2, 7=0,1,...,m; —1land t=0,1,..., mi—l}.
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Encoder for any cyclic code over Z, of length 4n

Theorem 4.2 (continue)

m;—1 mi;—1

C = {D> a2 (fi(z)® +2f,(x)h( +22bt:rf ei(x)
j=0
|a]-s€Z4, be € Zo, j:O,l,...,mi—landt:(),l,...,mi—l}.
Case 10.
d;—1 .
G = {Za] )+ 2F () (wio(2) + h(@)Fi(2))) es(@)

|aj€Z4, j=0,1,...,m; — 1}.
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Encoder for any cyclic code over Z, of length 4n

Theorem 4.2 (continue)

Moreover, if the subcode C; is of type 4502k for all 1 < i <,
then C is of type

42 i=1ko0,i93 i1 ki




Our new approach

Self-dual cyclic codes over Z, of length 4n

For any polynomial f(y) = 2?20 cjy’ € Zyly] of degree d > 1,
the reciprocal polynomial of f(y) is defined as

— d .
Flo) = FO) = o) = - e
7=0

Then f(y) is said to be self-reciprocal if f(y) = ¢ f(y) for some
§ € Z; ={1,—1}. After a rearrangement of f1(y),..., fr(y)
there are integers A, € such that

>A>1,e>0and A+ 2¢e =r;
> fi(y) is reciprocal, for all t = 1,...,\;
> fati(U) = Oagjfaterj(y), forall j=1,... e
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Self-dual cyclic codes over Z, of length 4n

Let C be a cyclic code over Zy4 of length 4n with canonical form
decomposition C = ®]_,e;(x)C;, where C; is an ideal of B;.
Then C is self-dual if and only if for each integer i, 1 <i <,
C; satisfies one of the following conditions.

(i) If 1 <1 < A, C; is given by one of the following three cases:
(1) Ci = (2).

(i2) C; = (fi(x)* + 2(ho(x )~ s )fi(x))), where

ho(z), ha(x) € Ti = {3°72 Yajzd | ag,a1,. .., am,—1 € {0,1}} s.t.

ho(x) + 2™ (wip(x™1) + ho(z™1)) = 0 (mod (f;(x),2)),

ha(x) + 2™ (i1 (271) + ha(e™1)) = 0 (mod (f;(2),2)).
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Self-dual cyclic codes over Z, of length 4n

(i-3) C; = (fi(x)3 + 2h(x),2f;(x)), where h(x) € T; satisfying
the followmg condition:

h(z) + 2™ h(z~") = 0 (mod (f;(2),2)).

(i) If i = A+ j where 1 < j <, (C;,Citc) is given by one of
the following eleven cases:

(ii-1) C; = (0) and Cite = (1);

(ii-2) C; = (1) and Cite = (0);

(ii-3) C; = (2f;()®) and Ciye = (fire(x)*75,2), where
s=0,1,2,3:

ii-4) C; = (fi(z)},2) and Cite = (2f; 1 (x)*71), where 1 = 1,2,3;
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Self-dual cyclic codes over Z,4 of length 4n

(ii-5) C; = (fi(z) + 2h(z)) and
Cite = {fire(@) + 2Fire(@) (a™™wio(e™) + (@) Firc(a)) ),
where 03(x) = 2™ (w; 1 (z71) + h(z™)) and h(z) € T;
(ii-6) C; = (fi(z)? + 2h(x), 2f;(z)) and
Cite = (fire@)® + 211 (@)Fi(a), 2F 11 (0)?),

where t;(z) = x> (w;o(z~") + h(z™1)) and h(z) € T;;
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Self-dual cyclic codes over Z,4 of length 4n

(i7) Ci = (£(@)? + 2(ho(a) + h1(2)F;(=)) and
Cite = (fire@)? +2(10(2) + 81 @)Fi1(@))),

where S\i,o(az) = 2™ (w; o(x L) + ho(z™1)),
di1(x) =a™ (wi,l(:n_l) + hi(z™1)) and ho(z), hi(z) € T;;
(ii-8) C; = (f;(x)® + 2h(x),2f;(x)) and

Cite = <f2+6( )® + 2$3mih($—1)’2ﬁ+€(m)>,

where h(zx) € Ty;
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Self-dual cyclic codes over Z,4 of length 4n

(i9) C; = (fi(2)® + 2f,(2)h(), 2F;(2)?) and
Cite = (fire(®)? + 2t:(2), 2f;1 (2)),
2mi (; o (2= 1) + h(z~1)) and h(z) € T;;
(1-10) C; = (£i(2)? + 2F (@) (wio (@) + h(2) i(x))) and
Cite = (firel) +20i(a)),

where 1/9\1(55) = 2™i(w;1(z71) + h(z™1)) and h(z) € T;.

where t;(x) = x
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Self-dual cyclic codes over Z, of length 28

We list all distinct 339 self-dual codes over Z4 of length 28.

Let dg,d; and dg be the minimum Hamming distance, Lee
distance and Euclidean distance of a Z4-code, respectively.
Among the 339 self-dual codes over Z, of length 28, we have 50
new good codes with basic parameters

(28,|C| =228, dy = 4,d;, = 8,dp = 8), these self-dual and cyclic
Z4-codes do not exist in [11] and [14]

[11] M. Shi, L. Qian, L. Sok, N. Aydin, P. Solé, On constacyclic codes over
Za[u)/(u? — 1) and their Gray images, Finite Fields Appl. 45 (2017), 86-95.

[14] Database of Z4 codes [online], http://www.z4codes.info (accessed on 03
September 2016).



Thank you for your attention!
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