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Introduction



Introduction

Rank metric codes

• In 1951, the rank metric was introduced by Hua as an “arithmetic

distance” for matrices over a finite field Fq.

• The rank distance dR between two square matrices M and N over

the finite field Fq is the rank of their difference, i.e.,

dR(M,N) = rank(M − N).

• In 1978, Delsarte defined the rank distance on the set of bilinear

forms (which can also be seen as the set of rectangular matrices).

He proposed the construction of optimal matrix codes attaining a

Singleton-type bound using the rank metric.

• Codes consisting of matrices over finite fields (matrix codes) with

the rank metric have been used in many applications: network

coding, space-time coding, array codes, etc.

• In 1985, Gabidulin introduced the notion of rank metric codes in

vector representation over an extension field of Fq.
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Introduction

Self-dual codes

• Self-dual matrix codes are said to exhibit good trade-off between the

dimension and minimum distance.

• In the Hamming metric, a way to construct new self-dual codes from

a self-dual code of smaller size, called the building-up construction:

• binary case by Kim, J.-L.

• Fq where q is a power of 2 or q ≡ 1 mod 4 by Kim, J.L. and Lee, Y.

(2004)

• Fq where q ≡ 3 mod 4 by by Kim, J.L. and Lee, Y. (2015)

• certain rings

• The building-up construction proved to be an efficient way to

contruct self-dual codes, as there are many new self-dual codes,

often with the best minimum distance, were obtained this way.

• In 2015, Morrison characterized matrix codes and classified self-dual

matrix codes of small size over small finite fields.
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Matrix codes

Mm×n(Fq): the vector space of m × n matrices over Fq

Definition

An m × n linear matrix code C over Fq is a subspace of Mm×n(Fq). If

C is of dimension k , then C is called an [m × n, k] linear matrix code

over Fq. An m × n matrix X ∈ C is called a codeword of C .

For any X ,Y ∈Mm×n(Fq), the function

〈X ,Y 〉 = trace(XY T ) =
∑m

i=1[XY T ]ii , is an inner product.

Definition

The dual of an [m × n, k] matrix code C over Fq is given by

C⊥ = {X ∈Mm×n(Fq)| 〈X ,Y 〉 = 0 for all Y ∈ C}.

The matrix code C is self-orthogonal if C ⊂ C⊥ and self-dual if

C = C⊥.
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Rank metric

Definition

Let C be an m × n matrix code over Fq and X ∈ C .

1. The (rank) weight of X , denoted wtR(X ), is the rank of the matrix

X .

2. The (rank) distance between two codewords X1,X2 ∈ C is the rank

of their difference X1 − X2, i.e.,

dR(X1,X2) = wtR(X1 − X2).

3. The minimum (rank) distance of C , denoted d = dR(C ) , is the

minimum distance between two distinct codewords in C , which is

also the minimum weight of nonzero codewords in C , i.e.,

d = dR(C ) = min
X1,X2∈C , X1 6=X2

dR(X1,X2) = min
06=X∈C

wtR(X ).
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Matrix codes and block codes

• Define the map ρ :Mm×n(Fq)→ Fmn
q by

ρ(A)ρ([aij ]) = (a11, a21, . . . , am1, a12, . . . , am2, . . . , amn)

A =

 1 4 7

2 5 8

3 6 9

↔ ρ(A) = (1, 2, 3, 4, 5, 6, 7, 8, 9)

• For an [m × n, k] matrix code C over Fq, there corresponds an

[mn, k] linear block code C = ρ(C ) = {ρ(A) : A ∈ C} over Fq.

• 〈X ,Y 〉 = trace(XY T ) = ρ(X ) · ρ(Y )

• ρ(C⊥) = ρ(C )⊥

• C is self-dual ⇔ C = ρ(C ) is self-dual

• A generator matrix for C = ρ(C ) is also called the generator matrix

for C
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Self-dual rank codes over F2r

Theorem

Let C be a self-dual 2× (n − 1) matrix code over F2r with generator

matrix G = [gi ]. Then the code whose generator matrix is either:

(i) G ′ = [1 1]⊕ G or

(ii) G ′ =


1 0 x

y1 y1 g1

...
...

...

yn−1 yn−1 gn−1

, where x ∈ F2(n−1)
2r such that x · x = 1

and yi = x · gi for 1 ≤ i ≤ n − 1

is a self-dual 2× n matrix code over F2r .

Proposition

Any self-dual 2× n matrix code C ′ over F2r is obtained from some

self-dual 2× (n − 1) matrix code C over F2r by the construction

method in the above theorem.
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Self-dual rank codes over F2r

Example. Let C be the binary self-dual 2× 3 matrix code with generator

matrix G =

 1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

, i.e., the matrix code with basis

{[
1 0 0

0 0 1

]
,

[
0 0 1

1 0 0

]
,

[
0 1 0

0 1 0

]}
.

Applying the theorem with x = (1 1 1 0 0 0), we get the 2× 4 matrix code

C1 with generator matrix G1 =


1 0 1 1 1 0 0 0

1 1 1 0 0 0 0 1

1 1 0 1 0 0 1 0

1 1 0 0 1 1 0 0

 self-dual,

with the following basis{[
1 1 1 0

0 1 0 0

]
,

[
1 1 0 0

1 0 0 1

]
,

[
1 0 0 1

1 1 0 0

]
,

[
1 0 1 0

1 0 1 0

]}
.
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Self-dual rank codes over Fq, q ≡ 1 mod 4

Theorem

Suppose q ≡ 1 mod 4 and c ∈ F∗q such that c2 = −1. Let G = [gi ] be

a generator matrix of a self-dual 2× (n− 1) matrix code over Fq. Then

the code generated by either of the following:

(i) G =
[

1 c
]
⊕ G

(ii) G =


1 0 x

−y1 −cy1 g1

...
...

...

−yn −cyn gn−1

 where x ∈ Fn
q such that x · x = −1 and

yi = x · gi ,

is a self-dual 2× n matrix code over Fq.

Proposition

Every 2× n self-dual matrix code over Fq can be obtained from a

2× (n − 1) self-dual matrix code by the above construction.
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Self-dual rank codes over Fq, q ≡ 1 mod 4

Corollary

For m > 2 even, any self-dual m × n matrix code over F2r can be

obtained from an m × (n − 1) self-dual matrix code by the previous

construction.

Corollary

Assume m > 2 is even and q ≡ 1 mod 4. Let C be a self-dual

m × (n − 1) code over Fq with generator matrix G. Then the code

obtained by applying the previous construction to G m
2 times is a

self-dual m × n matrix code.
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Self-dual rank codes over Fq, q ≡ 3 mod 4

Theorem

Suppose q ≡ 3 mod 4 and n is even. Let G = [gi ] be a generator

matrix for a 2× (n− 2) self-dual matrix code. Then the code generated

by

G =


1 0 a c x1

0 1 b d x2

−s1 −t1 as1 + bt1 cs1 + dt1 g1

...
...

...
...

...

−sn−2 −tn−2 asn−2 + btn−2 csn−2 + dtn−2 gn−2

,
where a, b, c , d ∈ Fq such that a2 + c2 = b2 + d2 = −1,

ab + cd = 0, 2si = x1 · gi and 2ti = x2 · gi , and xi · xj = 0 for

i , j = 1, 2.

is a self-dual 2× n matrix code over Fq.
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Classification of self-dual matrix

codes



Equivalence of matrix codes

Definition

Two [m × n, k] matrix codes over Fq are said to be linearly

matrix-equivalent if there exists a linear matrix-equivalence map f

between them, that is, an invertible map f that preserves the rank

weight of all matrices in Mm×n(Fq). Otherwise, they are called linearly

matrix-inequivalent.

Additional condition: for m × n linear codes C , f must satisfy

f (C⊥) = (f (C ))⊥ to guarantee that self-dual codes are mapped to

self-dual codes.
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Equivalence of matrix codes

Equivalence map on the generator matrix of self-dual matrix codes:

Proposition (Morrison,2014)

EquivSD
Mat(Mm×n(Fq)) =

{T i (R ⊗ LT ) : i = 0, 1; L,R ∈ GOm(Fq)}, if m = n

{R ⊗ LT : R ∈ GOn(F ), L ∈ GOm(Fq)}, if m 6= n

where GOn(Fq) = {A ∈ GLn(F ) : AAT = λIn for some λ ∈ F∗q} and T

is the matrix corresponding to transposition, i.e, the m2 ×m2 matrix

T = [Eji ]ij whose (i , j)th block is the m ×m matrix Eji , the matrix with

1 on the (j , i)th entry and 0 elsewhere.

The following mass formula applies to matrix codes:

b

mn
2 −1∏
i=1

(qi + 1) =
∑

linearly matrix-inequivalent Ci

|EquivSD
Mat(Fm×n

q )|
|AutSDMat(Ci )|

where b = 1 if 2|q and b = 2 if 2 - q.
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Classifying self-dual matrix codes

Example. We classify binary self-dual 2× 2 matrix codes.

The only self-dual 2× 1 matrix code is generated by [1 1],

• we have the 2× 2 matrix code C1 with generator matrix

G1 =

[
1 1 0 0

0 0 1 1

]
.

• Using the vector (0 1) we get the 2× 2 matrix code C2 with

generator matrix

G2 =

[
1 0 0 1

1 1 1 1

]
.

All the nonzero codewords in C1 has rank weight 1 but there are rank

weight 2 codewords in C2.

So C1 and C2 are linearly matrix-inequivalent.

Mass formula confirms that these are complete representatives.
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Enumeration of Linearly Matrix-Inequivalent Self-dual Matrix

Codes over F2

Size Code Construction x G |AutSDMat (C)| Wt Dist

2 × 2 C1 (i) [1 1] 4 (1, 3, 0)

C2 (ii) (01) [1 1] 8 (1, 1, 2)

2 × 3 D1 (i) C1 12 (1, 7, 0)

D2 (i) C2 4 (1, 3, 4)

D3 (ii) (0010) C1 4 (1, 5, 2)

D4 (ii) (0010) C2 2 (1, 3, 4)

D5 (ii) (0111) C2 6 (1, 1, 6)

2 × 4 E1 (i) D1 96 (1, 15, 0)

E2 (i) D2 16 (1, 7, 8)

E3 (i) D3 16 (1, 9, 6)

E4 (i) D4 4 (1, 5, 10)

E5 (i) D5 12 (1, 3, 12)

E6 (ii) (011010) D1 96 (1, 7, 8)

E7 (ii) (101010) D1 96 (1, 9, 6)

E8 (ii) (011010) D2 16 (1, 3, 12)

E9 (ii) (101111) D2 16 (1, 5, 10)

E10 (ii) (010011) D2 32 (1, 5, 10)

E11 (ii) (011001) D2 32 (1, 3, 12)

E12 (ii) (001000) D3 32 (1, 9, 6)

E13 (ii) (111000) D3 32 (1, 3, 12)

E14 (ii) (000100) D4 4 (1, 3, 12)

E15 (ii) (011010) D4 12 (1, 1, 14)

E16 (ii) (001000) D4 16 (1, 7, 8)

E17 (ii) (010011) D4 16 (1, 1, 14)

E18 (ii) (011001) D4 8 (1, 3, 12)

E19 (ii) (000100) D5 16 (1, 1, 14)

E20 (ii) (110100) D5 48 (1, 3, 12)
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Enumeration of Linearly Matrix-Inequivalent Self-dual Matrix

Codes over F2

Size Code Construction x G |AutSDMat (C)| Wt Dist

2 × 5 F1 (i) E1 1440 (1, 31, 0)

F2 (i) E2 12 (1, 15, 16)

F3 (i) E3 36 (1, 17, 14)

F4 (i) E4 96 (1, 9, 22)

F5 (i) E5 96 (1, 7, 24)

F6 (i) E8 4 (1, 7, 24)

F7 (i) E9 8 (1, 9, 22)

F8 (i) E12 16 (1, 13, 18)

F9 (i) E13 16 (1, 7, 24)

F10 (i) E14 12 (1, 5, 26)

F11 (i) E15 48 (1, 3, 28)

F12 (i) E16 16 (1, 9, 22)

F13 (i) E17 32 (1, 3, 28)

F14 (i) E18 32 (1, 5, 26)

F15 (i) E19 96 (1, 3, 28)

F16 (i) E20 96 (1, 5, 26)

F17 (ii) (11100101) E14 6 (1, 1, 30)

F18 (ii) (10100001) E14 4 (1, 3, 28)

F19 (ii) (11111000) E14 10 (1, 3, 28)

F20 (ii) (01001111) E14 12 (1, 1, 30)

F21 (ii) (11110010) E14 12 (1, 7, 24)

F22 (ii) (00001011) E15 36 (1, 1, 30)

*The classifications for 2 × 4 and 2 × 5 self-dual matrix codes over F2 are open from

Morrison’s classification.

*We have also found 442 linearly-inequivalent 4 × 3 matrix codes over F2. 17



Enumeration of Linearly Matrix-Inequivalent Self-dual Matrix

Codes over F3

Size Code (a, b, c, d)
x1
x2

G0 |AutSDMat (C)| Wt Dist

2 × 2 C1

[
1 0 1 1

0 1 1 2

]
16 (1, 0, 8)

2 × 4 D1 (1, 1, 1, 2)

[
0 0 0 0

0 0 0 0

]
C1 24 (1, 0, 80)

D2 (1, 1, 1, 2)

[
1 1 1 0

0 0 0 0

]
C1 192 (1, 0, 80)

D3 (1, 1, 1, 2)

[
2 1 1 0

0 0 0 0

]
C1 288 (1, 8, 72)

D4 (1, 1, 1, 2)

[
1 2 0 1

1 1 1 0

]
C1 72 (1, 0, 80)

D5 (1, 1, 1, 2)

[
0 1 2 1

1 1 1 0

]
C1 8 (1, 32, 48)

D6 (1, 1, 1, 2)

[
1 1 0 1

2 1 1 0

]
C1 72 (1, 0, 80)

D7 (1, 1, 1, 2)

[
0 2 1 1

2 1 1 0

]
C1 384 (1, 4, 76)

D8 (1, 1, 1, 2)

[
2 2 0 1

1 2 1 0

]
C1 48 (1, 16, 64)

D9 (1, 1, 2, 1)

[
0 0 0 0

0 0 0 0

]
C1 288 (1, 0, 80)

D10 (1, 1, 2, 1)

[
1 1 1 0

0 0 0 0

]
C1 576 (1, 4, 76)

D11 (1, 1, 2, 1)

[
2 2 2 0

1 1 1 0

]
C1 192 (1, 8, 72)

D12 (1, 1, 2, 1)

[
0 1 2 1

1 1 1 0

]
C1 64 (1, 20, 60)

D13 (1, 2, 2, 2)

[
2 0 1 1

1 1 1 0

]
C1 32 (1, 8, 72)
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Enumeration of Linearly Matrix-Inequivalent Self-dual Matrix

Codes over F4 = F2[ω] where ω2 + ω + 1 = 0

Size Code Construction x G |AutSDMat (C)| Wt Dist

2 × 2 C1 (i) [1 1] 96 (1, 15, 0)

C2 (ii) (ω2ω) [1 1] 48 (1, 3, 12)

C3 (ii) (01) [1 1] 48 (1, 3, 12)

2 × 3 D1 (i) C1 720 (1, 63, 0)

D2 (i) C2 48 (1, 15, 48)

D3 (ii) (0ω2ω21) C1 144 (1, 27, 36)

D4 (ii) (0ω2ω21) C2 18 (1, 9, 54)

D5 (ii) (ω21ω1) C2 30 (1, 3, 60)

2 × 4 E1 (i) D1 46080 (1, 255, 0)

E2 (i) D2 768 (1, 63, 192)

E3 (i) D3 2304 (1, 75, 180)

E4 (i) D4 72 (1, 21, 234)

E5 (i) D5 120 (1, 15, 240)

E6 (ii) (ω2ωωω210) D1 46080 (1, 63, 192)

E7 (ii) (ω2ωω2ωωω2) D1 46080 (1, 63, 192)

E8 (ii) (1010ω2ω) D1 46080 (1, 63, 192)

E9 (ii) (ω2ω10ω2ω) D1 46080 (1, 75, 180)

E10 (ii) (ω2ωωω210) D2 2304 (1, 27, 228)

E11 (ii) (10ω2ωωω2) D2 768 (1, 15, 240)

E12 (ii) (01ω20ω1) D2 768 (1, 15, 240)

E13 (ii) (ωω21ω21ω2) D2 3072 (1, 15, 240)

E14 (ii) (ω2ωω01ω2) D2 3072 (1, 15, 240)

E15 (ii) (10ωωωω) D2 2304 (1, 27, 228)

E16 (ii) (01ω0ω0) D2 768 (1, 15, 240)

E17 (ii) (ω2ωω2ωωω2) D2 2304 (1, 27, 228)
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Enumeration of Linearly Matrix-Inequivalent Self-dual Matrix

Codes over F4 = F2[ω] where ω2 + ω + 1 = 0

Size Code Construction x G |AutSDMat (C)| Wt Dist

(cont) E18 (ii) (101ω2ω21) D2 3072 (1, 15, 240)

E19 (ii) (ωω21ωω1) D2 3072 (1, 27, 228)

E20 (ii) (ω0ω2000) D3 9216 (1, 75, 180)

E21 (ii) (ω0ω20ω2ω2) D3 3072 (1, 15, 240)

E22 (ii) (1ω0ωωω) D4 384 (1, 3, 252)

E23 (ii) (000ω20ω) D4 120 (1, 3, 252)

E24 (ii) (ω2ωωω210) D4 72 (1, 9, 246)

E25 (ii) (11ω2ωω2ω2) D4 72 (1, 9, 246)

E26 (ii) (ωωωωωω2) D4 381 (1, 3, 252)

E27 (ii) (01ω20ω1) D4 120 (1, 3, 252)

E28 (ii) (ω20ω2ω1ω) D4 72 (1, 9, 246)

E29 (ii) (ω210ω01) D4 120 (1, 3, 252)

E30 (ii) (ω10ω2ωω2) D4 192 (1, 15, 240)

E31 (ii) 1ω01ω20) D4 384 (1, 3, 252)

E32 (ii) (ω210ω2ωω) D4 1152 (1, 39, 216)

E33 (ii) (000ω20ω) D5 384 (1, 3, 252)

E34 (ii) (11ω2ωω2ω2) D5 384 (1, 3, 252)

E35 (ii) (00ω1ω21) D5 1920 (1, 15, 240)

E36 (ii) (ω2001ω20) D5 384 (1, 3, 252)

*The classifications for 2 × 3 and 2 × 4 self-dual matrix codes over F4 are open from

Morrison’s classification.
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Enumeration of Linearly Matrix-Inequivalent Self-dual Matrix

Codes over F5
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Enumeration of Linearly Matrix-Inequivalent Self-dual Matrix

Codes over F8 = F2[α] where α3 + α + 1 = 0

Size Code Construction x G |AutSDMat (C)| Wt Dist

2 × 2 C1 (i) [1 1] 448 (1, 63, 0)

C2 (ii) (α3α) [1 1] 448 (1, 7, 56)

C3 (ii) (αα3) [1 1] 448 (1, 7, 56)

C4 (ii) (01) [1 1] 896 (1, 7, 56)

C5 (ii) (α4α5) [1 1] 448 (1, 7, 56)

2 × 3 D1 (i) C1 28224 (1, 511, 0)

D2 (i) C2 448 (1, 63, 448)

D3 (ii) (0α2αα5) C1 3136 (1, 119, 392)

D4 (ii) (α0α6α4) C2 98 (1, 21, 490)

D5 (ii) (α3α3α4α5) C2 126 (1, 7, 504)

*These classifications for self dual matrix codes over F8 are open from Morrison’s

classification.
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Enumeration of Linearly Matrix-Inequivalent Self-dual Matrix

Codes over F9 = F3[α] where α2 + 2α + 2 = 0

Size Code Construction c x G |AutSDMat (C)| Wt Dist

2 × 2 C1 (i) α2 [1α2] 4 (1, 80, 0)

C2 (i) α2 [1α6] 16 (1, 16, 64)

2 × 3 D1 (i) α2 C1 2 (1, 728, 0)

D2 (i) α2 C2 90 (1, 88, 640)

D3 (ii) α6 (α2111) C1 576 (1, 8720)

D4 (ii) α2 (α2111) C2 160 (1, 8, 720)

D5 (ii) α2 (α6111) C1 72 (1, 88, 640)

D6 (ii) α6 (α6111) C1 720 (1, 24, 704)

D7 (ii) α2 (α20α21) C2 20 (1, 152, 576)
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Enumeration of Linearly Matrix-Inequivalent Self-dual Matrix

Codes over F13

Size Code Construction c x G |AutSDMat (C)| Wt Dist

2 × 2 C1 (i) 5 [1 5] 4 (1, 168, 0)

C2 (i) 5 [1 8] 24 (1, 24, 144)

2 × 3 D1 (i) 5 C1 2 (1, 2196, 0)

D2 (i) 5 C2 182 (1, 180, 2016)

D3 (ii) 5 (5000) C1 28 (1, 324, 1872)

D4 (ii) 8 (5000) C1 2184 (1, 36, 2160)

D5 (ii) 5 (4300) C1 156 (1, 180, 2016)

D6 (ii) 8 (6110) C1 1872 (1, 12, 2184)

D7 (ii) 8 (1610) C1 336 (1, 12, 2184)

*These classifications for self dual matrix codes over F13 are open from Morrison’s

classification.
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Concluding Remarks



Concluding Remarks

• Using the building-up constructions we are able to confirm and

extend the results of Morrison in 2015.

• However, we have stopped the classification of self-dual matrix

codes of larger sizes due to the lack of computing resource.

• It will be interesting to classify or construct more self-dual matrix

codes with larger sizes, i.e., matrix codes with four or more rows.

• The building-up constructions can also be used to construct optimal

self-dual codes of larger sizes over larger finite fields, in which not

much are known today.

25



References

E.M. Gabidulin. Theory of codes with maximum rank distance. Problemy

Peredachi Informatsii, 21(1):3–16, 1985.

W.C. Huffman. On the classification and enumeration of self-dual codes. Finite

Fields and Their Applications, 11(3):451–490, 2005.

J.-L. Kim and Y. Lee. Euclidean and hermitian self-dual mds codes over large

finite fields. Journal of Combinatorial Theory, Series A, 105(1):79–95, 2004.

J.-L. Kim and Y. Lee. An efficient construction of self-dual codes. Bull. Korean

Math. Soc, 52(3):915–923, 2015.

H. Lee and Y. Lee. Construction of self-dual codes over finite rings Zpm . Journal

of Combinatorial Theory, Series A, 115(3):407–422, 2008.

K. Morrison. Equivalence for rank-metric and matrix codes and automorphism

groups of gabidulin codes. IEEE Transactions on Information Theory,

60(11):7035–7046, 2014.

K. Morrison. An enumeration of the equivalence classes of self-dual matrix codes.

Advances in Mathematics of Communications, 9(4):415 – 436, May 2015. 26



THANK YOU!!!

27


	Introduction
	Background
	Building-up constructions
	Classification of self-dual matrix codes
	Concluding Remarks

