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Outline of this talk

In this talk, typically ‘a code’ means a self-dual code over a Galois
ring .
@ Review of the classification problem and brief history of
classification of codes

@ Galois rings, p-adic and g-adic integer rings and the relations
between them.

© Monomial transformation and automorphism group of codes.
© The number of codes for mass formula.

@ Classification of codes of length 4 for all odd prime p : free code
and non-free code.

© Improvements : self-dual codes over g-adic integers and codes
of length 6. We present some examples.



Introduction
Classification problem

The general strategy for the classification problem is as follows.

@ Calculate the total number of all distinct codes, say N.

© Choose a code C as a representative and calculate its
automorphism.

© Count the number of codes in the equivalent class in which C
included.

© Repeating this step until the total number of codes classified
meets the total number of codes N.



Introduction
Mass formula

Let N(n) be # of all self-dual codes of length n and s be # of
equivalent classes. Then we can get the mass formula :

| T"|
Z Autcy) ~ N

where T" = {0y | v € D", 0 € S} is the group of monomial
transformations.

Acquiring total number of codes and automorphisms of each class is
critical for the classification of self-dual codes.



Introduction

Classification of self-dual codes over Galois rings

@ In 1996, P. Gaborit found mass formula of self-dual codes over
Zy4.

@ In 2008, K. Nagata et F. Nemenzo and H. Wada found mass
formula of self-dual codes over Zps for odd prime p.

@ In 2011, K. Nagata et F. Nemenzo and H. Wada found mass
formula of self-dual codes over Zos as well.

@ In 2011, Y.H. Park classified self-dual codes over Z, of length 4.

@ In 2017, Park and Choi classified self-dual codes over Z,. of
length 4.

@ We generalized the results on self-dual codes over GR(p?, 2) of
length 4.

@ We are now focusing on the classification of free self-dual codes
over GR(p®, r) and g-adic integers of moderate lengths.



Galois Rings
Galois rings

Definition (Z.-W. Wan)

A Galois ring is defined to be a finite ring with identity 1 such that the
set of its zero divisers with 0 added forms a principal ideal (p) for
some prime number p.

@ Thering Zg = {0,1,2,3,4,5,6,7,8} have the principal ideal
(8) = {0,3,6}. Thus the ring Zg is a Galois ring.

@ The ring Zye is a Galois ring with p® elements.

@ The finite field Fpn is trivially a Galois ring with p™ elements.



Galois Rings
Construction of a Galois ring

Theorem

Let r be a positive integer and h(X) be a monic basic irreducible
polynomial in Zy[X] of degree r that divides XP~' — 1. The
polynomial h(X) is chosen so that ¢ = X + h(X) is a primitive (p'~")st
root of unity. Then a Galois ring of characteristic p® with (p®)"
elements, unique up to isomorphism, can be constructed as a ring

GR(p®, 1) = Zpe[X]/(h(X)) =~ Zpe[(].

@ If ¢ € GR(p®, r) is a primitive (p” — 1)st root of unity then the set
T ={0,1,¢,...,¢P 2} is called a Teichmiiller set.

@ Elements of GR(p®, r) can be uniquely written as a p-adic sum
Co+Cip+Cp?+ -+ Co1p® ' Withg e T.

@ Elements of GR(p¢, r) can also be written in the ¢-adic
expansion by + bi¢ + - - + br_1¢ " with bj € Zpe.



Galois Rings
Construction of a Galois ring

Example
@ In MAGMA GR(3%,3) ~ Z3s[X]/(X® + 2X + 1) and we set
¢ =X+ (X3+2X+1)and GR(33,3) ~ Zgz[(].
@ Leta =15+ 20¢ + 13¢? € GR(3%,3) ~ Z3[(] in the ¢-adic
expansion. Then « can be represented as a p-adic sum as
(2¢+ )+ 2+ ¢33+ (1+2¢+¢P)9.

@ We usually compute elements in GR(p®, r) with ¢-adic
expansion.

a-¢C = 15¢+420¢2+13¢3

15¢ 4 20¢2 + 13(25¢ + 26)
= 14 +16¢ +20¢2




Galois Rings

h(X) of GR(p?,2) for each prime p < 61 used in MAGMA

p h(X) p h(X)

2 X+ X+1 [[29] X2 124X +2
3| X2+2X+2 [[31 ][ X2+29X +3
5| X2°+4X+2 [[37 | X2 +34X+2
7 X2+6X+3 [[41 ]| X2+38X+6
1] XP4+7X+2 |[43 | X°+42X+3
13 X?e+12X +2 || 47 | X2 +45X +5
17 | X2+16X +3 || 53 | X2 +49X +2
19 [ X2+18X+2 ([ 59 | X2 +58X +2
23 [ X°+21X+5] 61 X°2+60X+2




Galois Rings
Galois ring

@ Actually, Z, is isomorphic to Galois ring of degree 1, denoted by
GR(p®,1) and GF(p") is isomorphic to GR(p, ).

@ The codes over finite chain rings have some good properties.

@ Every finite chain ring is a homomorphic image of some
polynomial ring GR(p®, r)[x].

@ GF(p") can be lifted to GR(p®, r) and they have some similarities
in structure.



Galois Rings
Lattice of Galois rings

Fps «—GR(p?,rs) «—GR(p% rs) -+ — 7?7
| | | |
Fpr «—GR(p%,r) «—GR(Pr) - = 7

Fp=Zp <— Zp > Ly e & Zps



Galois Rings
p-adic integers

Definition
Fix a prime number p. The p-adic absolute value of a nonzero
r=p*2 € Q with (a, p) = (b, p) = 1 is defined by

Irlp = p~*.

| - |p is a legitimate absolute value and it defines a metric on Q. By
completing Q with respect to this metric, we obtain a field of p-adic
numbers

Qp:{Za,p"\ 0<ai<p meZ}>Q.
i=ng

Its subring

Op={> ap' |0<a <p}={acQ]lalp<1}
i=0

is called the ring of p-adic integers.



Galois Rings
Facts

@ The ring of p-adic integers is a pricipal ideal domain.

Q |a+ Blp < max{|alp,|B|p} non-archimedian
Q@1+2+22+284+... =L =—1inQ..

Q —1isasquarein Qpiff p=1 (mod 4).

O (2121342303 - -(5))2 = —1in Qs.

Q (2+5+2.5245%34+3-54+...)(24+5+2-524+5%+3-54+...)+1 =0



Galois Rings

Finite extensions of p-adic humbers

Theorem

For each integer r > 1, there exists a unique unramified extension
Qpr of degree r over Qp. It can be obtained by adjoining to Qp, a
primitive (p" — 1)st root of unity.

@ Let ( be a generator of F,. Then Fpr = Fp(().

@ Let h(X) be a minimal polynomial for ¢ over F,,. Lift h(X) to any
h(X) € Op which is an irreducible polynomial over Op and Q, of
degree r.

@ If ¢ is aroot of h(X), then Qp(¢) = Q,r is an extension of degree
r.

@ The residue field K of Q,(¢) contains a root ¢ (mod p) of h(X),
and K = Fp.



Galois Rings
g-adic integers

Let g = p" and the ring of integers of K = Qg is denoted by Oy:
Og={acQq|lal <1}

Oy is the set of all roots in Qp of monic polynomials over Op. We call
Ogq the ring of g-adic integers.

Theorem
Oq = Op[(], where ( is a primitive (p" — 1)st root of unity. J

Its unique maximal ideal is
Pqg=p0q={acQpy|la <1}.
We have that the residue field of Qp is



Galois Rings
Hensel’s Lemma

Theorem (Hensel’s Lemma)
Let F(X) € Oq[X]. Suppose that there exists an oy € Oq such that

F(a1)=0 (mod p), F'(a1)#0 (mod p)

Then there exists a unique o € Op such that o = oy (mod p) and
F(a)=0.

The set of all (p” — 1)st root of unity in O, together with 0

Tr:{0717<7"' 7<pr_2}

is a complete set of coset representatives for O4/(p).v Thus,
elements of O4 can be uniquely written as a formal infinite p-adic sum

Co+ Cip+Cop®+ 4 Co1p® 4+

with ¢; € T,.



Galois Rings
Lattice of Galois rings

For each natural number e,

Oq/(P°) = Op[C]/(P°%) = Zpe[¢]/(P°) = GR(p®, 1)
We have a projective systems

Fps ~GR(p,rs) +—GR(p?,rs) «—GR(p% rs) +— - +—Ops
| | | |

Fy ~GR(p,r) +—GR(p?r) <+—GR(P’r) +— - +Op
| | | |

Fp ~Zp — sz — Zp3 — —0Op



Self-dual code over Galois rings
Codes over Galois rings

@ A linear code over Galois ring GR(p°®, r) of length nis a
GR(p°®, r)-submodule of GR(p®, r)"

@ A code C over GR(p¢, r) of length n has a generator matrix
permutation equivalent to the standard form

Iy Aot Ao Aoz Ao, e—1 Aoe

0 ph PAz2 pAiz ... PAie-i PAie
G=|0 0 P2l P°Asxs P?Az 61 P?Aze ;

0 0 0 0 ... p U, PAcie

@ A code with this matrix is said to be of type
(e (p)(p?) - - (p° ).

@ ky is called a free rank and a code of type 1% is called a free
code.



Self-dual code over Galois rings
Codes over Galois rings

@ The dual code C+ of C is
Ct ={ve GR(p°r)"|v-w=0forallwc C}.

@ A code C is called self-orthogonal if C ¢ C*+ and self-dual if
C=Ct.

@ A code is called decomposable if the code is a direct sum of two
or more codes. If a code is not decomposable, it is called
indecomposable.

@ A generator matrix of decomposable code is a block matrix of its

subcodes. & o
o 1
G1 © GZ — <O GZ)



Self-dual code over Galois rings
Monomial transformation

@ D" is a set of diagonal matrices:

D" = {diag(v1,72, - ,vn) | v € GR(p®, 1), ¥* = 1}.

@ Anelemento € S, and v € D" acts on GR(p®, r)" by
V= (Vo(1), Vo(2), * » Vo(m))Y
@ The group of all monomial transformations T" is defined by

T"={ov|veD", o€ S,}.

@ Two self-dual codes C and C’ are called equivalent if there exists
an element 7 € T” such that C+ = C'.



Self-dual code over Galois rings
Automorphisms of C

@ Aut(C) is the group of all automorphisms of C.

@ Permutation parts of C is p(C) = {o | oy € Aut(C)}

@ sign parts of C is defined by s(C) = Aut(C) N D.

° [s(CO)lIp(C)| = [Aut(C)|-

@ We denote a automorphism group of C by
1s(C)].p(C)

or we just denote the order as

s(C)1-1p(C)]



The number of codes

The number of self-orthogonal codes over GR(p, r)

Propostion (V. Pless, 1965)

Let o4(n, k) be the number of self-orthogonal codes of length n and
dimension k over F4, where q = p™ for some prime p and an integer
m. Then:

@ If nis even, g even,

(@ - OIS (@2 - 1)
oq(n, k) = ,
it (-1

@ If nis even, g odd,

(@ =1 (1))@ — "D (@ = 1)
[T (g = 1)

The term Hfj(q”*z" —1)istobe 1 when k=1 and o4(n,0) =1

aq(n, k) =




The number of codes

The number of self-orthogonal codes over GR(p®, r)

Next theorem is a generalization of the results on the number of
self-dual codes over Zs, which are published consecutively by
Gaborit (1996), Nagata et al.(2008, 2009), Balmaceda et al. (2008).
Theorem

The number of distinct self-dual codes over a Galois ring GR(p?, r)
for odd prime p is given by

Nep(n)= > op(nk)(p)E"/2
0<k<|n/2]

Particularly, the number of distinct free self-dual codes over a Galois
ring GR(p®, r) for odd prime p is given by

B () = 0 (n7 g> ple—1ris2




The number of codes

The number of self-orthogonal codes over GR(p®, r)

Sketch of proof
A self-orthogonal code Cy over GR(p, r) with a generator matrix

Go = (lk A1 B1)
is lifted to a self-dual code over GR(p?, r) with generator matrices

G:(Ik Ay By +pB
) plk1 pC1

Then, C; is determined completely by Gy and B: is chosen among
(pr)k(k71)/2




The number of codes

Possible length of self-dual codes over GR(p®, r)

Theorem (S.T. Dougherty et al., 2009)

@ Ifeis even, then there exist self-dual codes over GR(p®, r) for all
lengths.

© Ifeis odd and the residue field GF(p") has characteristic 1
(mod 4), then there exist self-dual codes over GR(p¢, r) for all
even lengths.

© Ifeis odd and the residue field GF(p") has characteristic 3
(mod 4), then there exist self-dual codes over GR(p®, r) for all
even lengths a multiple of 4.




Classification

Free self-dual codes over GR(p°®, r) of length 4

Theorem

Let p # 2,3 and A4 be the alternating subgroup of S4. Then the free
self-dual code C with generator matrix (denoted by (a, b))

1 0 a b
01 -b a

over GR(p°®, r) is one of the following four classes :

Class (a, b) Aut(C)
(i) a&+1=0,b=0 4.((13),(1234))
(ii) =1, a#=+1 2.A;
(i) |a=1,bP+2=0 2.((13), (1234))
(iv) else 2.((12)(34), (13)(24))

Codes from classes (i), (ii), (iii) are unique, up to equivalence.




Classification

Self-dual codes over GR(p®, r) of type 12p°

Theorem
Let Ny, N>, N3, Ny be the number of class (i), (i), (iii), (iv) self-dual
codes over GR(p®, r) of length 4 and rank 2, respectively.
’ pr (mod 24) ‘ N, ‘ N> ‘ N3 ‘ Ny ‘
er el‘—1726
1 11 |1 | & _—= “’24 _
erJr er—r__
5 1 O o per p2e‘r1—r 8
’ 0 110 o
LA L
13 1]111]0 7”5r+p§i:18
17 1101 7”;"5’{ -
19 0|1 |1 | ==
er+ er—r
23 0| 0]|O0 pae




Classification

Self-dual codes over GR(p®, r) of type 12p°

Sketch of proof

Compute solutions of each polynomial over GR(p, 1)[x] ;
x?>+1=0,x% =1and x> + 2 = 0. Then by Hensel's lemma, we get
the solutions of each polynomial over GR(p®, r)[x]. Checking the
mass formula, we obtain the number of inequivalent codes of each
class.

For example, we checked that

@ 53 =5 (mod 24). Thus over GR(52, 3) there are unique code of
class (i) and (5% + 5% — 6)/24 = 656 codes of class (iv).

@ 74 =1 (mod 24). thus over GR(7,4) there are unique codes of
class (i), (i), (iii) and (74 + 7° — 26)/24 = 99 codes of class (iv).

@ 7% =7 (mod 24). Thus over GR(72, 3) there are unique code of
class (i) and (78 + 72 — 8)/24 = 4916 codes of class (iv).



Self-dual codes over GR(p, 1)

Classification

Lp ]

()

l

(if)

l

(i)

l

(iv) |

5

(2,0)

7

11

(1,3)

13

17

(1,7)

19

(1,6)

23

29

31

37

41

43

—~|—~
—_ =
—_ -
o —
~

47

53

59

(1,23)




Free self-dual codes over GR(p?, 1)

Classification

el () (if) (iif) (iv) |
3 (1,4)
51 (7,0) (7,5)
7 (18,19) (2,17),(4,9)
11 (1,19) 5 codes
13| (70,0) | (22,23) 7 codes
17| (38,0) (1,24) | 12 codes
19 (68,69) | (1,63) | 15codes
23 23 codes
29 | (41,0) 36 codes
31 (439, 440) 41 codes
37 | (117,0) | (581,582) 58 codes
41 | (378,0) (1,71) | 71 codes

Table: Self-dual codes over GR(p?, 1) of type 12p°.



Classification

Self-dual codes over GR(p, 2) of length 4

(Pl ® | (i) @ 1 W

5 (2,0) (2¢+1,2( +2) (1,2 + 4)

7 (¢+3,0) (2,3) (1,3¢+2) 1 code
11| (4¢+3,0) (C+3,(+4) (1,3) 4 codes
13 (5,0) (3,4) (1,4¢+11) 6 codes
17 (4,0) (5¢ + 14,5C + 15) (1,7) 11 codes
19| (5¢+7,0) (7,8) (1,6) 14 codes
23 [ (11¢+12,0) | (4C+7,4C+8) (1,9¢ + 14) | 21 codes
29 (12,0) (14 +8,14C+9) | (1,7C+26) | 34codes
31| (4¢+27,0) (5,6) (1,¢ +30) 39 codes
37 (6,0) (10,11) (1,6¢ +25) | 56 codes
41 (9,0) (19C + 12,19¢ + 13) (1,11) 69 codes
43 | (4¢+41,0) (6,7) (1,16) 76 codes
47 | (23¢ +24,0) | (3C+20,3¢ +21) | (1,20¢ +27) | 91 codes
53 (23,0) (24¢ +31,24¢ +32) | (1,23(+7) | 116 codes
59 | (3¢+28,0) | (13¢ +52,13¢ + 53) (1,23) 144 codes

Table: Self-dual codes of length 4 over GR(p, 2)



Classification

Free self-dual codes over GR(2,2) and GR(4,2)

@ There exist two inequivalent self-dual codes over GR(2,2)

((1) ] ?);<(13),(1234)>,

1.0 ¢ 1+¢). 4
01 14¢ ¢ )™
@ There exist 2 inequivalent free codes over GR(4,2),
(1 0 ¢ ¢+ 1) oA
01 3+3 ¢ ) =™
1 0 ¢ C+1) .
(0 1 3¢+1 ¢ ) :2.((12)(34), (14)(23)).

@ h(X)=X?+X+1€ Zpe[X].



Classification

Free self-dual codes over GR(3,2) and GR(3?,2)

@ There exist two inequivalent self-dual codes over GR(3,2)

(2) ? 134 1i)rc):4.<(1:>,),(1234)>,

10 1 1
<o 1 2 1)'2'34'

@ There exist 5 inequivalent free codes over GR(9, 2),

(:) (1) 1:;( 1?_C)ofclass(i)since(1+§)2+1—0,

101 4 oo
(0 15 1 of class(iii) since 4= +2 =0
1+¢,3¢),(1+¢,3),(3¢+1,6¢ + 4) of class (iv).

(
0 h(X) = X2 +2X +2 € Zge[X].



Free Self-dual codes over GR(p?,2)

Classification

€

|

(i)

[ (v) ]

P (1)

3 (1+¢,0) (1,4) 3

5 (7,0) (6 +220,7 + 220) (5¢,7) 26

7 | (29¢ + 38,0) (30,31) (1,45¢ +37) | 101
11| (92¢ + 80,0) (89C + 69,89 + 70) (1,19) 614
13 (70,0) (146, 147) (1,43 +89) | 1196
17 (38,0) (226¢ + 218, 226¢ + 219) (1,24) 3491
19 | (252¢ + 102,0) (68,69) (1,63) 5444
23 | (34C +357,0) | (441C + 398,441¢ +399) | (1,515¢ + 382) | 11681

Table: Self-dual codes of freerank 2 and length 4 over GR(p?,2)



Classification

Types of self-dual codes over GR(p?, r) of length 4

@ Type of 1%p* (Trivial code).
pl4 : 16.84

Q Type of 12p° (Free code).

1 0 a b
01 —-b a

1 a b c
0 poO —gp
0 0 p -3¢

Note that there are more types of codes over GR(p®, r) as e and n grows.

© Type of 1'p2.



Classification

Mass formula of self-dual codes over GR(p?, 1) of length 4

Np271 (4) = UP(47 0),00 + UP(47 1 )pO + UP(4> 2)p1
= 1+(P+1)2+2(pp+1)p
= 3p°+4p+2

@ # of the trivial self-dual code plj : op(4 0)p° = 1
@ # of the self-dual codes of type 1'p? : o5(4,1)p° = (p+ 1)?
@ # of the self-dual codes of type 12 : ap( 2)p° =2(p+1)p



Classification

Self-dual codes over GR(p?, r) of free rank 1

Lemma (Park and Choi, 2017)

Let p be a odd prime. Then a self-dual code C over GR(p?, r) of free
rank 1 of length n has a generator matrix in the standard form ;

1=a; a a3 --- ap1 ap+pb
0 p 0 -~ 0 pbo
0 o -~ 0 p pbn_1

where a;’s, b;’s are in T and
Q a, + pby is a unitin GR(P?, r),
Q by = —aka,71 for k > 2.

(1,a2,as, - ,an) € GR(p, r)" of rank 1 determines the self-dual
codes over GR(p?, r) of free rank 1.



Classification

Self-dual codes over GR(p?, r) of free rank 1

Corollary

There is an one-to-one correspondence upto equivalence between
the set of self-dual codes over GR(p?, r) of free rank 1 and the set of
self-orthogonal codes over GR(p, r) of rank 1.

Corollary

Let C be a self-dual code GR(p?, r) of free rank 1 and Res(C) the
residue code of C. Then, Aut(C) = Aut(Res(C)).




Classification

Self-dual codes over GR(p?, r) of free rank 1

Theorem (Park and Choi, 2017)

Let C be a code over GR(p, r) of rank 1 of length 4 with generator
matrix (a1 ax as as) and (i), (ijk) be elements in S4 and
w € GR(p, r) such that w® = 1,w # £1.
Q Ifa? = &, then (i) € p(C).
Q /i (jj) € p(C) and & # &, then & = —a and all the other
elements except a; and a; are zero.
Q 17 (ijk) € p(C) and (i), (i})) £ P(C), then & = w?a, & = w*a?
and the other element except a;, a; and ay Is zero.

@ Ifp is odd and the number of a;’s which are zero is m, then
|s(C)| = 21+m.




Classification

Self-dual codes over GR(p?, 1) of type 1'p?

Theorem (Park and Choi, 2017)

Let p # 2,3. Then self-dual codes (a, b, c¢) of rank 3 is equivalent to
one of the following inequivalent codes :

Class (a,b,c) Aut((a, b, c))
(i) a=b=0 8<(14) (23))
(i) b=0,a=1anda #1,c% # 1 4.((124))
(iif) &=1,b=0 4.((12))

(iv) | b=0,a#0,8#+1,c>#+1,a8 #¢ 4.((1))
(v) a=1£bF=¢ 2.((1324), (12))
(vi) =0 =1 2.5;

(vii) & =1, #+1,c% # +1 2.5

(vii) a2 =1, # +1 and b* # — 2.((1),(14)(23))
(ix) P = 1,07 # +1 andb4z—1 2.((1243))
(x) 1,32 b2, c? are distinct, &, b?, ¢® # — 2.((1))




Classification

Self-dual codes over GR(p?, 1) of type 1'p?

Theorem (Park and Choi, 2017)

Forp # 2,3, let Ny, No, - - - . Nig be the number of class (i), (ii), - - -, (x)

self-dual codes over GR(p?, 1), respectively. These numbers are

determined as follows.

[P24) [Ni [Na [Ns| No [Ns[Ns[ No [ Ng [No] Nio |
1 1 1 1 pg25 1 1 p_Tzﬂ pg%g 1 (p+1)2179228p+216
5 [1]ofofeg]1]o]es[e2]0 | amwm
7 Jo[1]oleZo]1]eZ] o |o] et
11 ool 1]t [ofo|eB] o |o] e twe
13 [ 1] 1o 1]1]58]e2]0 | e e
17 [ 1 o1 ]e7]1]o]e8 e8]y | @
19 (o[ 11 ]e2]o|1]|50] 0 [0 il tws
23 JoJofo| & [o]o]e&l | o |o]Emiers




Classification

Self-dual codes over GR(p?, 1) of type 1'p?

@ There exists unique self-dual code over GR(4, 1) of type 1'p?.
11 1 1
(1,1,1)={0 2 0 2
0 0 2 2
with automorphism S;. (a.k.a. the Klemm code)

@ There exists unique self-dual code over GR(9, 1) of type 1'p?.
11 0 4
(1,0,4)=(0 3 0 6
0 0 30
with automorphism 4.((12), (124))



Self-dual codes over GR(p?, 1) of type 1'p?

Classification

| P ] (1) \ (i) |Gy [ () (v)
52 [ (0,0,7) (1,2,12)
72 (2,0,17)

112 (1,0,19)

132 [ (0,0,70) | (8,0,43) (1,5,34)
1727] (0,0,38) (1,0,24) (1,4,72)
192 (7,0,46) | (1,0,63)

232 (2,0,169)

292 | (0,0,41) (2,0,71) | (1,12,70)
312 (5,0,161) (4,0,142)

372 (0,0,117) | (10,0, 248) (3,0,510) | (1,6,228)

Table: Cases 1 to 5 of self-dual codes of type 1'p? over GR(p?, 1)




Classification

Self-dual codes over GR(p?, 1) of type 1'p?

[P ] i)y | (vii) [ (viii) [ (x) ] (%) ]
72 ] (1,1,12)
112 (1,2,29)
132 | (1,1,45) (5,6,48)
172 (1,6,110) (4,5,139) (4,8,53)
192 1 (1,1,137) (1,5,50) (2,3,104)
(1,3,239)
232 (1,6,56) (2,4,212)
(1,7,100)
(1,2,136) (12,13,47)
292 (1,6,181) (12,14,325) (3,5,96)
(1,11,333) (12,19,149)
(1,2,98) (2,44,234)
312 | (1,1,82) (1,3,446) (2,9,289)
(1,9,107) (3,8,53)
(1,3,64) g’;’ ;22; (2,5,231)
372 | (1,1,206) | (1,5,618) (6.9, 609) (2,13,97)
(1,9,425) (6,12, 298) (3,4,495)

Table: Case 5 to 10 of self-dual codes of type 1'p? over GR(p?, 1)



Classification

Self-dual codes over GR(p?,2) of type 12p°

Np2,2(4) = Op? (47 0),00 + Op2 (47 1)p0 + Op2 (47 2)(p2)1
= 14 (PP +1)2+2(p7 +1)p?
= 3p*+4p*+2

@ For example, 3-23* +4.232 + 2 = 841,641 self-dual codes over
GR(232,2) exist.

@ A self-dual code over GR(232,2) has 238 = 78,310, 985, 281
codewords.

@ We show that there are 13,228 equivalent classes.



Classification

Self-dual codes over GR(p?,2) of type 1'p?

Theorem

Forp # 2,3, let Ny, No, - - - . Nig be the number of class (i), (i), - - -, (x)
self-dual codes over GR(p?,2), respectively. These numbers are
determined as follows.

[Class| Ny | N; [ Ng | Nio |
’ 4 ‘ p°—25 ‘ pP—17 ‘ 0°—9 ‘ (p°+1)°—28p°+216
24 8 8 192

andN1:N2:N3:N5:N6:Ng:1




Classification

Self-dual codes over GR(p?,2) of type 1'p?

Note that there exist two self-dual code over GR(4,2) of type 1'p?.
(1,1,1) : 8.5,
(1,1,1+2¢) : 8.5,
and there exist four self-dual code over GR(9, 2) of type 1'p?.
(1,0,4) : 4.Bs,
(0,0,¢ +1): 8.8y,
(1,(+1,¢+1): 2.B;,
(¢.¢+1,(+2):2.B.



Self-dual codes over GR(p?,2) of type 1'p?

Classification

[P T [O) [ (i) (vii) (viih)
5 (1,2,12) (1,1,6¢ +12) (1,2¢,2¢ +3) (2,.¢,2¢), (2. +1,2¢ +2)
(1,3, 23¢ + 20) (2, ¢ +3,23¢ + 20)
> (1,¢ +2,30¢ + 10) (¢, ¢ +3,17¢ +31)
7 (1,¢ +3,8¢ +24) (1,1,37) (¢ +1,¢+8,30¢ +28)
(1, ¢ +4,30¢ + 23) 2 3 43 39
(1,3¢ + 1, 24¢ + 24) (¢ +2,¢+3,43¢ +39)
’ ’ (¢ +3,2¢ +2,45¢ +35)
112 (1,4¢ + 3,59¢ + 36) (1,1,57¢ +18) 13 codes 14 codes
132 (1,5, 135) (1,1, 45) 19 codes 20 codes
172 (1,4,72) (1,1, 126¢ + 141) 34 codes 35 codes
192 | (1,11¢ + 12, 57¢ + 173) (1,1, 137) 43 codes 44 codes
232 (1,11¢ + 12, 57¢ + 173) (1,1, 353¢ + 268) 64 codes 65 codes

Table: Self-dual codes of type 1'p? over GR(p?,2)(p < 29)




Improvements
Self-dual codes over p-adic numbers of length 4

The preivous results can be extended for the self-dual codes over
p-adic integer rings Z,- and, hopefully, over g-adic integer rings.

Theorem (Dougherty and Park, 2006)
IfC is a self-dual code of length n over Zp~ then C has type 12. J

With this theorem and Helsel’'s lemma, we can see that there exist
four classes of self-dual codes over Z,- of length 4 as same as the
case over Zp. Especially, there are infinitely many inequivalent codes
of class (iv).



Improvements
Examples of self-dual codes over Z ;-

@ Over Zs~ there exists a unique self-dual codes of class (iii)

1 0 1 b
01 —-b 1
where b2 +2 = 0.

b=112212.. .3 =1+1-3+2.324+2.3541.37+2.3" 4 ...
@ Over Z7~ there exists a unique self-dual code of class (ii)

1 0 a b
01 —-b a

where @ + b?+1=0,8° =1and & # 1.



Improvements
Self-dual codes over Z73~ of length 4

p = 73 is the smallest prime which gives examples of self-dual codes
over Zp- in all classified classes.

@ Unique free code of Class (i)
1

a=(27,62,28,56,58,52,51,21,11,56,39,27,47,1,67,3,68,25,...)
b=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...)
@ Unique free code of Class (ii)

= (8,30, 54,57,49, 56,69,
b= (9,30,54,57,49,56, 69,
@ Unique free code of Class (iii
a=(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...)
b=(12,6,41,58,55,49,36, 27,5, 35,34, 70, 30,27,13,39, 25,63, ...)
@ One of infinitely many free codes of Class (iv)
= (17,60, 35,42, 26, 40, 66, 52, 39, 29, 60, 45,29,37,4,7,29,23, ...)
b=(32,34,2,9,29,16,42,56,67,27,33,58,38,22,69,47,47,12,...)

62,19,51,66,22,51,18,2,40,14,48,...)
62,19,51,66,22,51,18,2,40,14,48, . ..)
)

Here a p-adic integer 7%, ap' is expressed as an infinite sequence (a;).



Improvements
Free self-dual codes of length 6 - decomposable cases

Decomposable free self-dual codes C of length 6 with generator
matrix (denoted by 2(a, b, ¢))

1 00 0 0 a
010 b c O
001 —¢c b O

over GR(p, 1) is one of the following four classes :

Class P(a,b,c) |s(C)].|p(C)]
(i) &+1=0,c%+1=0,b=0 8.48
(i) Z+1=0,b=10"#1 4.24
(i) [ @+1=0,b=1,°+2=0 4.16
(iv) else 4.8

Codes from classes (i), (ii), (iii) are unique, up to equivalence.



Improvements
Free self-dual codes of length 6 - decomposable cases

The number of class (i), (ii), (iii), (iv) decomposable free self-dual
codes C over GR(p®, r) of length 6

’ pr (mod 24) ‘ N1 ‘ Ng ‘ N3 ‘ N4 ‘
e e =T _og
! UL R o
+p¥ " —
5 1 0|0 pe’ p§,4 -
+p* " —
13 1 1 0 pe’ p§,4 -
+p% "~
17 1 0|1 |ZR p24




Improvements
Free self-dual codes of length 6 -Indecomposable cases

Propostion
Let
G=(lh A
be a standard generator matrix of a self-dual code over GR(p, r) of

length 6. Then, G is decomposable iff A has at least two zero
elements.

Sketch of proof

1 0 0 0 0 a

010 b c d|=1+a=0ad=ag=0Thus,d=g=0.
0 01 e f g

Similarly, we can check all cases and ‘only if’ part is clear.

Thus indecomposable code has at most 1 zero in A. Indecomposable
codes of length 6 with no zero in A are all MDS.



Improvements
Free self-dual codes of length 6

Propostion

Let C be a self-dual code over GR(p, r) with

where 2 + 1 = 0. Then, (13)(24)(36) € Aut(C).

If b =1, then there is unique C with | Aut(C)| =2.8forp=1,17
(mod 24).

For example, over GR(89, 1)

(
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and over GR(97,1)

/N
co—
o—o
—oco
—o
[0 X
wh™
~oo—
aw~
N

-
~



Improvements
Free self-dual codes of length 6

Propostion
Let C be a self-dual code over GR(p, r) with

1 0 0 1 i i
01 0 | a —a—1
0O 01 Jj —a-1 a

Then, | Aut(C)| = 2.24.

For example, over GR(89, 1)

and over GR(97,1)



Improvements

Rigid codes

If a codes has a trivial automorphism group, it is called a rigid code.
p = 53 is the smallest prime which gives examples of rigid code over

GR(p, r):
1000 3 19 1001 2 10 1001 8 26
01042510 ), |1 010123634 ), (01016 5 6
0016 1 11 0011517 11 001224933



Thank you!
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