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Motivation

Public-key cryptography has entered
post-quantum era

1 The first generation PKC: Integer-factoring-based
RSA (1977)

2 The second generation PKC:
discrete-logarithm-based ECC (1984)

3 Peter Shor’s quantum algorithm (1994)
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Motivation

The increased interest focuses on
post-quantum cryptography recently due to

1 Fast advance in quantum computers
2 announcement by NIST to call for new standards

for post-quantum cryptosystems
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Motivation

Alternative public-key cryptosystems resistant
to quantum computing attacks

1 Lattice-based cryptography
2 Code-based cryptography
3 Multivariate-based cryptography



Ivy: A new IND-CCA-secure code-based public-key scheme

Motivation

There are 82 proposals submitted to NIST, in
which 69 schemes enter the first round.

1 29 lattice-based schemes
2 20 code-based schemes
3 10 mulivaribles-based schemes
4 10 other-based schemes
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Motivation

Announcement by Chinese Association for
Cryptologic Research (CACR) to call for new
cryptographic schemes including post-quantum
schemes in June, 2018.

submission deadline: Feb. 28, 2019
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Preliminaries

Fnqm: n-dimensional vector space over a finite
field Fqm.

(β1, . . . , βm): a basis of Fqm over Fq.
x = (x1, . . . , xn) ∈ Fnqm: xi =

∑m
j=1 xjiβj,

1 ≤ i ≤ n.

x̄ =


x11 x12 . . . x1n
x21 x22 . . . x2n

...
... . . . ...

xm1 xm2 . . . xmn

 ∈ Fm×nq .
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Preliminaries

Supp(x) :=< x1, . . . , xn >Fq ; the Fq-linear
space of Fqm spanned by the coordinates of x.

wR(x) := rank(x̄) = dim(Supp(x)).[
m
r

]
q

=
∏r−1

i=0
qm−qi
qr−qi = Θ(qr(m−r)): the

number of supports of dimension r is the
number of linear subspaces of Fqm of dimension
r.
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Preliminaries

For integers 1 ≤ k ≤ n, a linear rank-metric code C
of length n and dimension k over Fqm is a subspace
of dimension k of Fnqm embedded with the rank
metric.
It is spanned by the rows of a matrix G ∈ Fk×nq ,
called by generator matrix of C.
The (n− k)× n generator matrix H of C⊥ is the
parity check matrix of C.
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Preliminaries

q-linearized polynomials

L(x) =
∑d

i=0 aix
qi, ai ∈ Fqm, ad 6= 0: a

q-linearized polynomial over Fqm, and d is called
the q-degree of f(x), denoted by degq(f(x)).

Lq(x,Fqm): the set of all q-linearized
polynomials over Fqm.

multiplication operation: the composition
L1(x) ◦ L2(x) = L1(L2(x)).

The set Lq(x,Fqm) forms a non-commutative
ring under the operations of composition ◦ and
ordinary addition.
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Preliminaries

Gabidulin codes

Gabidulin codes were introduced by Gabidulin in
1985 and independently by Delsarte in 1978. They
can be seen as the q-analog of Reed-Solomon codes.
Let g1, . . . , gn ∈ Fqm be linearly independent over Fq
and the Gabidulin code G is defined as follow:

G = {(m(g1), . . . ,m(gn)) ∈ Fnqm|m(x) ∈ Lq(x,Fqm)

and degq(m(x)) < k}.
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Preliminaries

The Gabidulin code G with length n has dimension
k over Fqm and the generator matrix of G is as
follows:

G =


g1 . . . gn
gq1 . . . gqn
... . . . ...

gq
k−1

1 . . . gq
k−1

n

 .

The minimum rank distance of these codes is
n− k + 1, and so they can efficiently decode up to
n−k
2 errors.
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Preliminaries

Decoding of Gabidulin codes

The algorithm employed in order to decode
Gabidulin codes was proposed by Sidorenko [1], etc,
which is the generalization of Berlekamp-Massey
algorithm and its complexity is O(n2).

[1] V. Sidorenko, G. Richter, M. Bossert. Linearized shift-register

synthesis, IEEE Transactions on Information Theory, vol. 57, No. 9,

2011.
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Preliminaries

Difficult problems used in our
cryptosystem

Rank syndrome decoding problem (RSD for short)

Given a check parity matrix H ∈ F(n−k)×n
qm of a

random linear code, and y ∈ F1×(n−k)
qm , the goal is to

find x ∈ F1×n
qm with wR(x) = w such that

HxT = yT .
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Preliminaries

The RSD problem has recently been proven difficult
with a probabilistic reduction to the Hamming
setting in [2]. As we all know, syndrome decoding
problem in Hamming metric is NP-hard [3].

[2] Philippe Gaborit and Gilles Zemor. On the hardness of the decoding
and the minimum distance problems for rank codes. IEEETrans.
Information Theory, 62(12): 7245-7252, 2016.
[3] E. Berlekamp, R. McEliece and H. Van Tilborg. On the inherent
intractability of certain coding problems, IEEE on IT, vol. 24, No. 3,
384-386, 1978.
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Preliminaries

Decisional version of RSD problem

Given input (H,yT )
$←− F(n−k)×n

qm × F(n−k)×1
qm , the

decision RSD problem asks to decide with
non-negligible advantage whether (H,yT ) came
from the RSD or the uniform distribution over
F(n−k)×n
qm × F(n−k)

qm .
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Preliminaries

Security definiion

An Encryption scheme (Keygen, Enc, Dec) has to
satisfy both Correctness and IND-CPA security
properties.

Correctness: For every pair of keys (pk. sk) and
every message m, we have
P [Dec(sk, Enc(pk,m, θ)) = m] = 1− negl(λ), for
negl(·) a negligible function, λ is security
parameter.
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Preliminaries

IND-CPA: indistinguishability under
chosen plaintext attacks

A public-key encryption scheme (KeyGen,Enc,Dec) is IND-CPA if any
probabilistic polynomial-time adversary A can only succeed with
probability at most 1

2 + negl(λ) in the following experiment:

1 The challenge oracle runs Keygen(1λ) to generate the random pair
(pk,sk) and gives pk to A;

2 A outputs two equal-length messages (m0,m1), and transmits
them to a challenge oracle along with pk;

3 The challenger oracle selects a random b ∈ {0, 1}, and computes
c∗ ← Enc(mb, pk, θ) and returns the ciphertext c∗ to A;

4 A outputs a guess b′ for the value of b. If b′ = b, we say A
succeeds.
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Preliminaries

Note that the standard security requirement for a
public key cryptosystem is IND-CCA2, i.e.,
indistinguishability against chosen ciphers attacks,
and not just IND-CPA. The main difference is that
for IND-CCA2 indistinguishability must hold even if
the attacker is given a decryption oracle.



Ivy: A new IND-CCA-secure code-based public-key scheme

Preliminaries

IND-CCA: indistinguishability against
chosen ciphers attacks

A public-key encryption scheme (KeyGen,Enc,Dec) is IND-CCA if any probabilistic
polynomial-time adversary A can only succeed with probability at most 1

2
+ negl(λ) in

the following experiment:

1 The challenge oracle runs Keygen(1λ) to generate the random pair (pk,sk)
and gives pk to A;

2 A makes any polynomial number of queries on the cipher-texts he chooses to
the decryption oracle Dec(sk, ·);

3 A outputs two equal-length messages (m0,m1), and transmits them to a
challenge oracle along with pk;

4 The challenger oracle selects a random b ∈ {0, 1}, and computes
c∗ ← Enc(mb, pk, θ) and returns the ciphertext c∗ to A;

5 There are two cases:

In IND-CCA1, the adversary may not make the further calls to the
decryption oracle.
In IND-CCA2, the adversary may make further calls to the decryption
oracle, but may not submit the challenge ciphertext C∗.

6 A output a guess b′ for the value of b. If b′ = b, we say A succeeds.
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Preliminaries

In [4, 5], a generic transform is presented to pass an
IND-CPA encryption scheme into an IND-CCA2
KEM.

[4] A. Fujisaki and T. Okamoto, Secure integration of asymmetric and
symmetric encryption schemes, CRYPTO’99, LNCS Vol. 1666, Springer,
Heidelberg, 537-554

[5] D. Hofheinz, K. Hovelmanns, and E. Kiltz. A modular analysis of the

fujisaki-okamoto transformation. Cryptology ePrint Archive, Report

2017/604, 2017.
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Preliminaries

Key encapsulation mechanism KEM

KEMs are a class of encryption techniques designed to secure
symmetric cryptographic key material for transmission using
asymmetric public-key algorithms.

KEMs simplify the traditional key exchange process by using
hash function instead of padding.

The key exchange protocol, or authenticated key exchange
protocol, etc, can be obtained by a direct application of the
KEM.
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Preliminaries

An example

Traditional way: Bob first turns M into a larger
integer 1 ≤ m ≤ n by using an agreed-upon
reversible protocol known as padding scheme, such
as OAEP. He computes the ciphertext c = me

mod n.
Alice can recover m from c by m = cd mod n.
Given m, she recovers the original message M by
reversing the padding scheme.
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Preliminaries

An example -continued

KEM way: Bod generates a random m, 1 ≤ m ≤ n.
He derives his key M by M = KDF (m), where
KDF is a key derivation function, such as
cryptographic hash. He then computes the
ciphertext c = me mod n.
Alice then recovers m by m = cd mod n.
Given m, she can recover the key M by
M = KDF (m).
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IvyPKE: An IND-CPA-secure code-based scheme

Key Generation Ivy.PKE.Keygen(): ρ, σ
$←− {0, 1}256, H ∼ Fn×nqm :=

Shake256(ρ) and X, Y ∼ Fn×nqm := Shake256(σ) with wR(Xi) =
wR(Yi) = we, where Xi and Yi denote the ith column of X and
Y . Set Q := HX + Y .
The public key: pk = (ρ,Q). The secret key: sk = X.

Encryption Ivy.PKE.Enc(pk=(ρ,Q),m ∈M):
Let G ∈ Fk×nqm be the generator matrix of a Gabidulin code G. Set

γ
$←− {0, 1}256 and r, e1, e2 ∼ F1×n

qm := Shake256(γ) with wR(e1) =

wR(e2) = wR(r) = w. Return the ciphertext c = (c1, c2) ∈ F1×2n
qm ,

where
c1 = rH + e1, c2 = rQ+ e2 +mG.

Decryption Ivy.PKE.Dec(sk,c)
Compute c2−c1X = mG+rY +e2−e1X. Since wR(rY +e2−e1X) =
wewr ≤ n−k

2
, then m is obtained by decoding algorithm of G.
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IvyPKE: An IND-CPA-secure code-based scheme

Correctness.

The correctness of our new encryption scheme
clearly relies on the decoding capability of the code
G. Specifically, assuming that G. decode correctly
decodes c2 − c1X, we have

Decrypt(sk, Encrypt(m, pk)) = m.

And G.decode correctly decodes wR(rY +e2−e1X)
whenever wR(rY + e2 − e1X) ≤ δ = n−k

2 .
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IvyPKE: An IND-CPA-secure code-based scheme

Let us check the error distribution.
Suppose that Xi and Yi are taken from the same
vector space with dimension we and the basis is
{α1, . . . , αwe} including 1. Similarly, suppose that
e1, e2 and r are taken from the vector space with
dimension wr and the basis is {β1, . . . , βwr}.
Therefore, the dimension of the subspace spanned
by rY + e2 − e1X is at most wewr.

For decoding, we consider Gabidulin code [k, n] over
Fqm, which can decode n−k

2 rank errors and choose

our parameters such that wewr ≤ n−k
2 , so that there

is no decryption failure.
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IvyPKE: An IND-CPA-secure code-based scheme

Theorem
The encryption scheme IvyPKE is IND-CPA secure
under the RSD assumption.

Sketch of proof. Due to decision RSD problem,
the pair (H,Q = HX + Y ) is indistinguishable from
(H,T ), where X, Y, T ∈ Fn×nqm are chosen randomly.
In addition, (H, rH + e1) and (Q, rQ+ e2) are
distinguishable from (H, t1) and (Q, t2), where
e1, e2, t1, t2, r ∈ Fnqm are chosen randomly.
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IvyKEM: the IND-CCA secure KEM

Key Generation Ivy.KEM.Keygen():
It is the same as the Ivy.PKE.Keygen().

Encapsulation Ivy.KEM.Encaps(pk=(ρ,Q)):
1. m← {0, 1}256
2. (K, d, r) := G(pk,m)
3. c := Ivy.PKE.Enc(ρ,Q,m; r)
4. ss := H(c ‖ K ‖ d)
5. return(c, d; ss)

Decapsulation Ivy.KEM.Decaps(sk = (X, ρ,Q), c)
1. Compute m′ := Ivy.PKE.Dec(X, c)
2. (K ′, d′, r′) := G(pk,m′)
3. c′ := Ivy.PKE.Enc(ρ,Q,m′; r′)
4. if c′ = c and d = d′ then
5. return ss := H(c′ ‖ K ′ ‖ d′)
6. else the decapsulation fails and return ⊥
7. end if
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IvyKEM: the IND-CCA secure KEM

Theorem IvyKEM scheme is IND-CCA2 secure
under the RSD assumption provided that G,H are
random oracles.
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Choice of parameters

Table: Parameter sets for IvyKEM

instance q m n k w wr Security
Ivy-I 2 89 64 4 5 6 128
Ivy-II 2 110 90 6 6 7 192
Ivy-III 2 130 100 4 6 8 256
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Choice of parameters

Table: The theoretical sizes in byte for IvyKEM

Instance pk size sk size ct size ss size Security
Ivy-I 45, 600 45, 600 1488 64 128
Ivy-II 111, 407 111, 407 2539 64 192
Ivy-III 162, 532 162, 532 3314 64 256

Table: The theoretical sizes for Classic McEliece

Instance q m n k t w security pk size
Classic 2 13 8192 7815 29 29 128 368, 282B
McEliece 2 13 6960 5413 119 119 256 1, 046, 737B
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Choice of parameters

Table: The theoretical sizes in byte for RQC

Instance pk size sk size ct size ss size Security
RQC-I 1491 1491 1555 64 128
RQC-II 2741 2741 2805 64 192
RQC-III 3510 3510 3574 64 256
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Choice of parameters

Generic Attacks

The attack to the IND-CCA2 security of IvyKEM is
to solve the rank syndrome decoding problem with
parameters (qm, n, k, w, we) in Table 1.

For an [n, k] rank code over Fqm, the best
combinatorial attacks to decode a word with errors
of weight w is

O((nm)3qrd
m(k+1)

n e−m).
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Conclusions

The main contribution in this talk is that we
propose a semantically secure public-key encryption
scheme whose security is based on rank syndrome
decoding problem. Then applying a variant of the
Fujisaki-Okamoto transform, we give an
IND-CCA-secure KEM.
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Conclusions

Security.

Our design rational is that security is first and
cost is second.

Our scheme is based on the hardness of rank
syndrome decoding problem, which is proved to
be NP-hard.

It cannot be excluded that some fatal attacks
are possible in the future since existing all
code-based scheme are of certain structures.

It is very worth that we propose such a
provably secure code-based cryptosystem.
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Conclusions

Efficiency. Although the public-key size is much
bigger than these in RQC, etc, it is much shorter
than classic McEliece.
Similarity with LWE. Our proposal is very similar
to LWE problem. FrodoKEM and LOTUS are based
on LWE problem and are NIST candidates.
No decoding failure.
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Thank you

Thank You for Your Attention!
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