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linear perfect Lee codes

Lee codes

For u=(u1,- - ,up),v=_(v1, - ,vp) €Z", their Lee distance is defined
by

n

dL(“? V) = Z|Ui - Vi|'

i=1

A Lee code C is a subset of Z" endowed by the Lee distance.

o If C has further the structure of an additive group, then C is called
linear Lee code.

e C is r-error-correcting: for x #y € C, di(x,y) > 2r + 1.

@ An r-error-correcting Lee code C is called perfect if for each x € Z",
there exists a unique ¢ € C such that d;(x, ¢) < r; denoted by
PL(n, r)-code.
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Perfect Lee codes and tilings

For VCZ"and x € Z", V+x={v+x:veV}

A collection T = {V +1/: | € L}, L CZ" of copies of V constitutes a
tiling of Z" by V if ¥ forms a partition of Z".

If L further forms a lattice, then ¥ is called a /attice tiling of Z".

Let S(n,r) ={x € Z" : di(x,0) = |x1| + -+ |xn| < r}.

Cis a PL(n, r)-code if and only if {S(n,r)+ c: c € C} constitutes a
tiling of Z" by S(n,r).

e Cis a linear PL(n, r)-code if and only if {S(n,r)+c:c € C} forms a
lattice tiling of Z".

Tao Zhang (Guangzhou University) linear perfect Lee codes July 5, 2018 3/28



linear perfect Lee codes

Lee spheres

(a) (b

tdy
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Golomb-Welch conjecture

In 1968, Golomb and Welch constructed PL(1, r)-codes, PL(2, r)-codes
and PL(n,1)-codes explicitly. In the same paper, they also proposed the
following conjecture.

Conjecture (Golomb-Welch conjecture)

For n > 3 and r > 2, there does not exist PL(n, r)-code.

@ In 1970, Golomb and Welch proved the nonexistence of PL(n, r)-codes
for given n and r > r,, where r, has not been specified.

@ Improvements by Post (1975), Lepisto (1981), Horak, Kim (2017).
@ Roughly speacking, for given n, if r > +/2n then there is no PL(n, r).
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Golomb-Welch conjecture

A special case of the Golomb-Welch conjecture, the nonexistence of linear
PL(n, r)-codes, can be converted into an algebraic combinatorics problem.

Theorem (Horak, AlBdaiwi 2012)

Let S C Z" such that |S| = m. There is a lattice tiling of ZZ" by translates
of S if and only if there are both an abelian group G of order m and a
homomorphism ¢ : Z" — G such that the restriction of ¢ to S is a
bijection.

There is a linear PL(n, r)-code if and only if there are both an abelian
group G and a homomorphism ¢ : 7" — G such that the restriction of ¢
to S(n, r) is a bijection.
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linear perfect Lee codes
Example

For n=2 and r =2, G = (33. Note that each homomorphism
¢ : Z" — G is determined by the values of ¢(e;) for i =1,--- ,n, where
{ej :i=1,---,n} is the standard basis of Z". Here we may take
¢(e1) =1 and ¢(e) = 5.
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linear perfect Lee codes

Linear Perfect Lee codes and degree-diameter problem

@ In a graph I, the distance d(u, v) from a vertex u to another vertex v
is the length of a shortest u-v path in I'.

@ The largest distance between two vertices in [ is the diameter of T.
@ Let I = (V,E) be a graph of maximum degree d and diameter k.

According to the famous Moore bound, I has at most
1+d+d(d—1)+--+d(d— 1)1 vertices. When the order of V

equals 1 +d+d(d — 1)+ --- +d(d — 1)k71, the graph I is called a
Moore graph.

Given positive integers d and k, find the largest possible number N(d, k)
of vertices in a graph with maximum degree d and diameter k.
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Linear Perfect Lee codes and degree-diameter problem

@ Let G be a multiplicative group with the identity element e and
SCGsuchthat S'=Sande¢gS. Here St ={s71:s¢e S}
The Cayley graph (G, S) has a vertex set G, and two distinct
vertices g, h are adjacent if and only if g~ th € S.

@ The diameter of a Cayley graph (G, S) is k if and only if k is the
smallest integer such that all elements in G appear in
{Nk_;si:si e Su{e}}.

@ There exists a linear PL(n, r)-code if and only if there exists an
abelian Cayley graph with degree 2r, diameter n and vertices

5(n, r)l-
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Two algebraic approaches

As summarized in a survey by Horak and Kim, it appears that for a small

radius r and a large dimension n, the nonexistence of a PL(n, r)-code is
difficult.

Two different approaches.
@ A polynomial method for r = 2 by Kim.

@ An algebraic number theory method for r =2, 3.
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Kim’s method

Theorem

Suppose that 2n®> +2n+ 1 = mv where v is a prime and v > 2n + 1.
Define a=min{a € Z* : v | 4% 4+ 4n+ 2} and b is the order of 4 modulo
v. (If there is no a with v | 4° + 4n+ 2, then we let a = 00.) Assume that
there is a linear PL(n,2)-code. Then there exists at least one

¢ e€{0,1,...,| 7]} such that the equation

a(x+1)+by=n—1¢

has nonnegative integer solutions.
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Kim’s method—main idea

@ Let the abelian group G be additive and let 0 be its identity element.
@ Then there exists S ={s; : i =1,...,n} C G such that

{0}, {£si:i=1,....n},{2s5i:i=1,...,n},{£sits;: 1 <i<j<n}

form a partition of G.

@ Let H be a subgroup of G of index v. Let p: G — G/H be the
canonical homomorphism and x; = p(s;). Then the multisets

{0h,{* £xi:i=1,....n*}{x £2x;:i=1,...,n %},
{x £x£x:1<i<j<nx}

form a partition of mG/H.
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Kim’s method—main idea

@ Let k be an integer

+ Z ((X:+XJ +(Xi—X;)Zk+(—Xi+><j)2k+(—><i—)9')2")
1<i<j<n
k—1

_ 2k\ = —
_(r1k
=(4% 4+ 4n4+2)Sp +2 tE:1 (21‘) S2tSa(k—1)

where S, :=>"" | xf.

k—1
_ 2h\ = — 0, v-—1{2k
4% 4+ 4n+2)Sp +2) ( )S Sotkeny =3 ’
( )S2k 2\ 2t 2tS2(k—t) Cm w12k,

Tao Zhang (Guangzhou University) linear perfect Lee codes July 5, 2018 13 /28



linear perfect Lee codes

Kim’s method—main idea

@ Let a and b be the least positive integers satisfying v | 4% + 4n + 2
and p | 4> — 1. Define

X={ax+by:x>1y >0}

o Claim 1: If 1 < k < “3! is not in X, then Sy, = 0.

o Suppose that Sy, = 0 for each k < kg — 1 that is not in X.

o Assume that kg ¢ X.

e As X is closed under addition, for any t, at least one of t and kg — t is
not in X.

o For any integer k, if v | 4k 4 4n+ 2, then k must be of the form a+ by
whence k € X. This implies that v { 4k 4 4n + 2.

0 0= (4% +4n+2)So +2 347" (30) S50 Sogke 1) = (4% + 40+ 2)Syy,.

e Thus §2k0 =0.
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Kim’s method—main idea

o Let e, be the elementary symmetric polynomials with respect to x12,

2 2
X2,"‘,X .

e Claim 2: If 1 < k < n< %! isnotin X, then e, = 0.

o Suppose that e, = 0 for each k < kg — 1 not in X and ko ¢ X.

o As X is closed under addition, for each 0 < t < kg, at least one of t
and ky — t is not in X.

o e =0or Syu-t)=0.

o Together with Newton identities on x2, ..., x2, we have
koeko = ek0,152 +--- 4+ (—1)"+1ek0,,-52,- +--- 4+ (—1)k0_152k0 =
(—1)k°_152k0 =0.

@ & = 0.

@ 0 appears at most [ 7] times in x;'s.

@ Suppose that 0 appears £ times in S. Then e,_; is the production of
those nonzero x,-2’s, whence e,_; # 0.

e n—1lisin X.
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Group ring

o Let G be a finite group.

@ The group ring Z[G] is a free abelian group with a basis {g | g € G}.
@ For any set A whose elements belong to G (A may be a multiset), we
identify A with the group ring element dec agg, where ag is the

multiplicity of g appearing in A.
o Givenany A=3"__; agg € Z[G], we define Al) = > gec %8’

@ Addition and multiplication:

Z g8 + Z bgg = Z(ag + bg)g,

geG geai geG
D %8 beg =3 (> anbrp)e.
geG geG geG heG
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A group ring equation r = 2

Let n > 2, then there exists a linear PL(n,2)-code if and only if there exist
a finite abelian group G of order 2n®> +2n+1 and T C G viewed as an
element in Z[G| satisfying

Q1leT,

Q 7=T10Y),

Q@ 7?2=2G6-T® 4 2n
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A group ring equation r = 2

@ There exists a linear PL(n,2)-code if and only if there are both an
abelian group G (written multiplicatively) of order 2n?> 4-2n+1 and a
homomorphism ¢ : Z" — G such that the restriction of ¢ to S(n, 2)
is a bijection.

@ Each homomorphism ¢ : Z" — G is determined by the values of ¢(e;)

fori=1,---,n, where {e; : i =1,--- ,n} is the standard basis of Z".
@ There exists a linear PL(n,2)-code if and only if there exists an
n-subset {ai, as,...,an} C G such that

n
C=1+) (ai+a'+a+a)+ > (ai+a)a+a")
i=1

J
1<i<j<n

olet T=1+37 (ai+a ).
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Main results r = 2

@ Let H be a subgroup of G with order mand p: G — G/H be the
canonical homomorphism.

o For S =3 ;58 we define S = p(S) =3¢ ser(g)-
@ Thus B
T= ) a&cZ[G/H]
gZ€G/H
where 3z = D (4. p(e)-2) %
Then previous conditions become:

0T=7"

-2 +(2)
@ 7T =2mG/H—-T"" +2n.

Tao Zhang (Guangzhou University) linear perfect Lee codes July 5, 2018 19 /28



linear perfect Lee codes
Main results r = 2

For small |G/H|, we can prove some results.

Suppose that 8n + 1 is not a square in 7. Assume that one collection of
the following conditions holds

@ 5|2n® +2n+1,8n— 3 #5k> for any k € Z;

Q 13|2n® +2n+1, 8n— 3 # 13k? for any k € Z;

© 17|2n® +2n+1.

Then there are no linear perfect Lee codes of radius 2 for dimension n.
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Main results r = 2 (ldea)

Case I: |G/H| =5.

e T € Z[C5]
-2 _ =0

e T"=—-T"+2n (mod G/H),

° (T(z))2 = TWD 4 on=_Tyon (mod G/H),

o T —anT’ +T+4n2—2n=0 (mod G/H).

o T —anT +T+4m —2n=(T' =T —2n+1)(T°+ T — 2n).

o Let S = a+ bG € Z[G] with |G| = v. Assume that positive integers v
and m satisfy a+vb=2n+1 and mv = 2n%2 +2n+1, and S satisfies

$%=2mG — S +2n.

Then 8n+ 1 is a square in Z.
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Main results r = 2 (ldea)

o T -T-2n+1=0 (mod G/H).

@ Take a non-principle character x € E/?I then x(T) € Z[(s] is such
that B B
(T = x(T)—2n+1=0.

@ 8n— 3 is a square in Z[(s].
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Main results r = 2

Theorem

Let n be a positive integer and p be a prime divisor of 2n. Let G be an abelian group of
order 2n® 4+ 2n+ 1. Suppose that H is one of its subgroup of index v. Define

= &VQ"“ my :=min{i:i € Z>o,i = m (mod p)} and
my :=min{i: i € Z>o,i =2m (mod p)}. Let f denote the order of p modulo v,
I'=min{i: p' =+£1 (mod v)} and d = (v — 1)/f. Define
A=max{r:r|(p'=1),r| (2 —p) for2’ =p (mod v)}.
Assume that
@ v is a prime,
@ 2n+ 1 is smaller than myv and myv,

@ 0 and o, generates the Galois group Gal(Q(¢,)/Q) where ¢, is a primitive v-th
root of unity.

@ AF£1lorv.

Then there are no linear perfect Lee codes of radius 2 for dimension n.
v
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Main results r = 2

By applying above results, there are no PL(n,2) for 3 < n < 100 except
n = 16,21, 36,55, 64, 66,78, 92.
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A group ring equation r = 3

Lemma

Let n > 3, then there exists a linear PL(n,3)-code if and only if there exist
a finite abelian group G of order 1+ 6n° + w and T C G viewed
as an element in Z[G] satisfying

Q@ 1eT,

Q0 7=T10D,

Q 73=6G-3TAT_276) 4 6nT.
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Main results r = 3

For small |G/H|, we can prove some results.

Assume that n = 1,5 (mod 7). If24n+ 1 is not a square or
841 (24n + 1)? £ 64/24n + 1 + 29, then there are no linear perfect Lee
codes of radius 3 for dimension n.

When n =5 (mod 7), 24n+ 1 can never be a square.
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Conclusion

It appears that our approach can be further applied on the existence of
PL(n,r) for r > 3. However, for r = 4,5, -- -, the group ring equations
become more complicated and contain much more terms. For instance, for
r = 4, there are T(4), T(3)T, T(@) T(Z), -+« in the equations.
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