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Introduction

Rank metric codes

e In 1951, the rank metric was introduced by Hua as an “arithmetic
distance” for matrices over a finite field IF,.

e The rank distance dr between two square matrices M and N over
the finite field Iy is the rank of their difference, i.e.,
dr(M, N) = rank(M — N).

e |n 1978, Delsarte defined the rank distance on the set of bilinear
forms (which can also be seen as the set of rectangular matrices).
He proposed the construction of optimal matrix codes attaining a
Singleton-type bound using the rank metric.

e Codes consisting of matrices over finite fields (matrix codes) with
the rank metric have been used in many applications: network
coding, space-time coding, array codes, etc.

e In 1985, Gabidulin introduced the notion of rank metric codes in
vector representation over an extension field of IFy.



Introduction

Self-dual codes

e Self-dual matrix codes are said to exhibit good trade-off between the
dimension and minimum distance.
e In the Hamming metric, a way to construct new self-dual codes from
a self-dual code of smaller size, called the building-up construction:
e binary case by Kim, J.-L.
o [, where g is a power of 2or g =1 mod 4 by Kim, J.L. and Lee, Y.
(2004)
e F, where g =3 mod 4 by by Kim, J.L. and Lee, Y. (2015)
e certain rings
e The building-up construction proved to be an efficient way to
contruct self-dual codes, as there are many new self-dual codes,
often with the best minimum distance, were obtained this way.

e In 2015, Morrison characterized matrix codes and classified self-dual
matrix codes of small size over small finite fields.
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Mnsn(Fq): the vector space of m x n matrices over F,

Definition

An m x n linear matrix code C over g is a subspace of M ,x,(Fg). If
C is of dimension k, then C is called an [m X n, k] linear matrix code
over Fq. An m x n matrix X € C is called a codeword of C.

For any X, Y € Mpxn(Fq), the function
(X,Y) = trace(XYT) = > ,[XYT];, is an inner product.

Definition
The dual of an [m x n, k] matrix code C over F is given by

Ct = {X € Mpmxn(Fg)| (X,Y) =0 forall Y € C}.

The matrix code C is self-orthogonal if C C C* and
C=C.



Definition

Let C be an m x n matrix code over I, and X € C.

1. The of X, denoted wtg(X), is the rank of the matrix
X.
2. The between two codewords X1, X5 € C is the rank

of their difference X; — X5, i.e.,
dR(Xl,Xz) = WTR(Xl = X2)

3. The of C, denoted d = dr(C) , is the
minimum distance between two distinct codewords in C, which is
also the minimum weight of nonzero codewords in C, i.e.,

d:dR(C)_ m

_ ' dr(X., Xo) = min witg(X).
s I g, RS 2 = D R



Matrix codes and block codes

e Define the map p: Mpyxn(Fq) — F7" by

p(A)p([a,J]) = (811, d2ly .- 9@mly @125 --5dm2y .-, am,,)

A= & p(A) = (1,2,3,4,5,6,7,8,9)
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e For an [m x n, k] matrix code C over g, there corresponds an
[mn, k] linear block code € = p(C) = {p(A) : A C} over F,.
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Matrix codes and block codes

e Define the map p: Mpyxn(Fq) — F7" by

p(A)p([aU]) = (811, d2ly .- 9@mly @125 --5dm2y .-, am,,)
1 4 7

A=1|2 5 8 | ¢ p(A)=(1,2,3,4,5,6,7,8,9)
3 6 9

e For an [m x n, k] matrix code C over g, there corresponds an
[mn, k] linear block code € = p(C) = {p(A) : A C} over F,.

(X,Y) = trace(XYT) = p(X) - p(Y)
p(CH) = p(C)+
e Cis self-dual & € = p(C) is self-dual

o A generator matrix for ¥ = p(C) is also called the generator matrix
for C
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Self-dual rank codes over F»,

Theorem

Let C be a self-dual 2 x (n — 1) matrix code over Fyr with generator
matrix G = [g;]. Then the code whose generator matrix is either:
(i) G =[11]® G or

1 0 ‘ X

yio oy 8l 2(n—1)

(i) G' = ) ) i , where x € I, such that x - x =1

Yn—1  Yn—1 | 8n—1
andy;=x-gi forl<i<n-—1

is a self-dual 2 x n matrix code over Fy:.

Proposition

Any self-dual 2 x n matrix code C’ over - is obtained from some
self-dual 2 x (n — 1) matrix code C over Fp- by the construction
method in the above theorem.



Self-dual rank codes over F,-

Example. Let C be the binary self-dual 2 x 3 matrix code with generator
1 0 0 0 0 1

matrix G=| 0 1 0 0 1 0 |, i.e., the matrix code with basis
0 01 1 0 O

Ueesllisalle a ol

Applying the theorem with x = (111000), we get the 2 x 4 matrix code

1 0/1 11000
. . 1 1/1 0 0 O O 1
C; with generator matrix G; = self-dual,
1 1/0 1 0 O 1 O
1 1/0 0 1 1 0 O

with the following basis

tels o 6l

1 0 0 1
00 1|1

0 0 1 1
10 0|71

0 1 0
01 0 |f°



Self-dual rank codes over F,, g =1 mod 4

Theorem

Suppose g =1 mod 4 and ¢ € [ such that c2=—1. Let G = [gi] be
a generator matrix of a self-dual 2 x (n — 1) matrix code over F,. Then
the code generated by either of the following:

(i)g:[l c}@c
1 0 | x

. i - 81
(i) G = i ; i where x € Fy such that x - x = —1 and

—Yn —CYn 8n—1
Yi=X-8i,

is a self-dual 2 x n matrix code over .

10



Self-dual rank codes over F,, g =1 mod 4

Theorem

Suppose g =1 mod 4 and ¢ € [ such that c2=—1. Let G = [gi] be
a generator matrix of a self-dual 2 x (n — 1) matrix code over F,. Then
the code generated by either of the following:

(i)g:[l c}@c
1 0 | x

. i - 81
(i) G = i ; i where x € Fy such that x - x = —1 and

—VYn —CYn 8n—1
Yi=X-8i,

is a self-dual 2 x n matrix code over .

Proposition

Every 2 x n self-dual matrix code over IF, can be obtained from a

2 x (n — 1) self-dual matrix code by the above construction.
10



Self-dual rank codes over F,, g =1 mod 4

Corollary

For m > 2 even, any self-dual m x n matrix code over Fy- can be
obtained from an m x (n — 1) self-dual matrix code by the previous
construction.

Corollary

Assume m > 2 is even and g =1 mod 4. Let C be a self-dual

m x (n— 1) code over Fq with generator matrix G. Then the code
obtained by applying the previous construction to G 7 times is a
self-dual m x n matrix code.

11



Self-dual rank codes over F,, g =3 mod 4

Theorem

Suppose g =3 mod 4 and n is even. Let G = [g;| be a generator
matrix for a 2 X (n — 2) self-dual matrix code. Then the code generated

by
1 0 a c X1
0 1 b d X
G = —51 —t as; -+ bty csy + dty a1 )
—Sp—2 —th2 asp2+ btn—2 CSp—2 + dtn—2 8n—2

where a, b, c,d € Fy such that 2> + ¢*> = b> + d*> = —1,
ab+cd =0, 2s; = x1 - g and 2t; = x» - gj, and x; - x; = 0 for
=12

is a self-dual 2 x n matrix code over F.

12



Classification of self-dual matrix
codes




Equivalence of matrix codes

Definition

Two [m x n, k] matrix codes over Iy are said to be linearly
matrix-equivalent if there exists a linear matrix-equivalence map f
between them, that is, an invertible map f that preserves the rank
weight of all matrices in Mpxn(Fq). Otherwise, they are called linearly

matrix-inequivalent.

Additional condition: for m x n linear codes C, f must satisfy
to guarantee that self-dual codes are mapped to

self-dual codes.

13



Equivalence of matrix codes

Equivalence map on the generator matrix of self-dual matrix codes:

Proposition (Morrison,2014)

{T(R&LT):i=0,1;L,R € GOn(F,)}, ifm=n

Equivsg IMas<a(0)) =
e Monxn(F)) {{R@LT:RG GOW(F),L € GOm(F,)}, ifm#n

where GO,(Fq) = {A € GLA(F) : AAT = Xl, for some A € F;} and T

2 matrix

is the matrix corresponding to transposition, i.e, the m?> x m
T = [Ej]; whose (i, ) block is the m x m matrix Ej;, the matrix with

1 on the (j, i)™ entry and 0 elsewhere.

The following mass formula applies to matrix codes:

|EquiviZ, (Fm<m)|
b 1
H (a'+ > Auts,(C)]

linearly matrix-inequivalent C;

where b=1if 2|]gand b=2if 2tgq.

14



Classifying self-dual matrix codes

Example. We classify binary self-dual 2 x 2 matrix codes.

The only self-dual 2 x 1 matrix code is generated by [11],

e we have the 2 x 2 matrix code C; with generator matrix

11 0 O
G = .
0 0 1 1

e Using the vector (01) we get the 2 x 2 matrix code C, with

GZ_{I 00 1}

generator matrix

1 1 1 1

All the nonzero codewords in C; has rank weight 1 but there are rank
weight 2 codewords in C,.

So C; and G, are linearly matrix-inequivalent.

Mass formula confirms that these are complete representatives.

15



Enumeration of Linearly Matrix-Inequivalent Self-dual Matrix

Codes over F,

Size Code Construction x G [Autp2 (O] Wt Dist
2% 2 &) 6) [T 4 (1,3,0)
[ (i) (01) 1] 8 (1,1,2)
2% 3 Dy [6) &) 12 (1,7,0)
Dy (P G 4 (1,3, 4)
D3 (i) (0010) o) 4 (1,5,2)
Dy (ii) (0010) @ 2 (1,3,4)
Ds (i) (0111) [ 6 (1,1, 6)
2% 4 E; 6) Dy % (1,15, 0)
Ey (i) Dy 16 (1,7,8)
E3 (i) D3 16 (1,9,6)
Ey (P D, 4 (1,5, 10)
Es (i) Ds 12 (1,3,12)
Eg (i) (011010) Dy 96 (1,7,8)
E; (i) (101010) Dy % (1,9,6)
Eg (i) (011010) D, 16 (1,3,12)
Eg (i) (101111) D, 16 (1,5, 10)
Erp (ii) (010011) Dy 32 (1,5, 10)
Ep (i) (011001) D, 32 (1,3,12)
Ein (if) (001000) D3 32 (1,9,6)
Ej3 (ii) (111000) D3 32 (1,3, 12)
Eia (i) (000100) Dy 4 (1,3,12)
Eps (ii) (011010) Dy 12 (1,1,14)
Ei (i) (001000) Dy 16 (1,7,8)
2 (i) (010011) Dy 16 1,1, 14)
Eig (if) (011001) | Dy 8 (1,3, 12)
Ejg (i) (000100) Ds 16 (1,1, 14)
Exg (i) (110100) Ds 48 (1,3,12)

16



Enumeration of Linearly Matrix-Inequivalent Self-dual Matrix

Codes over F,

Size Code Construction X G |Aut,?/,2t(c)\ Wt Dist
2% 5 Fr [6) E 1440 (1,31,0)
F (i) E> 12 (1,15, 16)
F3 (i) E3 36 (1,17, 14)
Fa () Ey 9 (1,09,22)
Fs (i) Eg % (1,7, 24)
Fe (i) Eg 4 1,7, 24)
Fr (i) Eq 8 (1,9,22)
Fg (i) Epp 16 (1,13, 18)
Fo (i) Ey3 16 1,7, 24)
Fio (i) Eiq 12 (1,5, 26)
Fi1 (i) Eps 48 (1,3, 28)
Fip (i) Eye 16 (1,9,22)
Fi3 (i) Ey7 32 (1,3, 28)
Fia (i) Eig 32 (1,5, 26)
Fis (i) Eyg % (1,3, 28)
Fi6 (i) Exo 96 (1,5, 26)
F7 (i) (11100101) | Eqq 6 (1,1, 30)
Fig (i) (10100001) | Epq 4 (1,3, 28)
Fig (if) (11111000) | Epq 10 (1,3,28)
Fao (i) (01001111) | Eqq 12 (1,1, 30)
Fn (ii) (11110010) | Eyq 12 (1,7,24)
F (i) (00001011) | Ejg 36 (1,1, 30)

*The classifications for 2 x 4 and 2 x 5 self-dual matrix codes over [F, are open from
Morrison’s classification.

*We have also found 442 linearly-inequivalent 4 x 3 matrix codes over 5. 17



Enumeration of Linearly Matrix-Inequivalent Self-dual Matrix

Codes over [;

Size Code | (a, b,c,d) 2 Gy |Autg? (C)] Wt Dist
2x2 | g 16 (1,0.8)
2% 4 Dy (1,1,1,2) 8 g 8 g a 24 (1,0, 80)
Dy 1,1,1,2) (1) ; é g @ 102 (1,0, 80)
D; (1,1,1,2) g (1] (1) g @ 288 (1,8,72)
Dy | (1,1,1,2) i f ? (1] @ 72 @, 0, 80)
Ds 1,1,1,2) ? i i (1) @ 8 (1, 32, 48)
D | (1.1,1,2) ; 1 (1) ; @ 7 @, 0, 80)
Dy (1,1,1,2) (2) f i ; @ 384 (1, 4, 76)
Dg (1,1,1,2) i ; ? ; a 48 (1, 16, 64)
Dy | (1.1,2,1) g g g g a 288 @, 0, 80)
b | @121 é ; é g @ 576 @, 4, 76)
Dyq (1,1,2,1) i f i 8 @ 192 (1,8,72)
D> (1,1,2,1) ? i i (1) a 64 (1, 20, 60)
D3 | (1,2,2,2) : ‘1’ 1 ; @ 32 ,8,72)

18



Enumeration of Linearly Matrix-Inequivalent Self-dual Matrix

Codes over F, = F,[w] where w? +w+1=0

Size Code Construction X G |Aut,?/,2t(c)\ Wt Dist
2% 2 =) [6) 7] % (1,15,0)
G (i) (w2w) 11 48 (1,3,12)
G (i) (01) [11] 48 (1,3, 12)
2% 3 Dy 6) G 720 (1, 63,0)
Dy () C 48 (1,15, 48)
D3 (i) (0w2w?1) o) 144 (1,27, 36)
Dy (i) (0w?w?1) G 18 (1,9, 54)
Ds (ii) (w?1wl) C 30 (1, 3, 60)
2% 4 E () Dy 46080 (1, 255, 0)
Ey (i) Dy 768 (1, 63, 192)
E3 (i) D3 2304 (1, 75, 180)
E, () Dy 72 (1,21, 234)
Es (i) Ds 120 (1, 15, 240)
Eg (i) (wPwww?10) Dy 46080 (1, 63, 192)
E; (ii) (wlwwlwww?) Dy 46080 (1, 63, 192)
Eg (i) (1010w2w) Dy 46080 (1, 63, 192)
Ey (i) (w2w10w?w) Dy 46080 (1, 75, 180)
Epo (i) (w2www?10) D, 2304 (1, 27, 228)
Epq (i) (1002 www?) Dy 768 (1, 15, 240)
Ep (ii) (01w20w1) D, 768 (1, 15, 240)
Ey3 (i) (ww?1w?1w?) Dy 3072 (1, 15, 240)
Eqa (i) (wPwwolw?) Dy 3072 (1, 15, 240)
Eps (ii) (10wwww) Dy 2304 (1, 27, 228)
Eig (ii) (01600) D, 768 (1, 15, 240)
Ei7 (ii) (wlwwlwww?) Dy 2304 (1, 27, 228)

19



Enumeration of Linearly Matrix-Inequivalent Self-dual Matrix

Codes over F, = F,[w] where w? +w+1=0

Size Code Construction X G \Aut,?/gt(c)\ Wt Dist
(cont) Eg (ii) (101w2w?1) Dy 3072 (1, 15, 240)
Epg (ii) (ww?lwwl) Dy 3072 (1,27, 228)
Eag (i) (w0w2000) D3 9216 (1, 75, 180)
Epq (i) (wow?0w?w?) | Dy 3072 (1, 15, 240)
Epy (ii) (lwOwww) Dy 384 (1,3, 252)
Epz (i) (000w20w) Dy 120 (1,3, 252)
Epg (i) (w2www?10) Dy 72 (1,9, 246)
Eos (i) (11w2ww?w?) | Dy 72 (1,9, 246)
Epg (i) (wwwwww?) Dy 381 (1,3, 252)
Ex7 (i) (01w20w1) Dy 120 (1,3, 252)
Epg (i) (w20w?2wiw) Dy 72 (1,9, 246)
Exg (ii) (w2100,01) Dy 120 (1,3, 252)
Ezg (i) (w10w2ww?) Dy 192 (1, 15, 240)
E31 (if) 1w01w20) Dy 384 (1,3,252)
Esp (i) (w2100l ww) Dy 1152 (1, 39, 216)
E33 (ii) (000w20w) Ds 384 (1, 3, 252)
Esq (i) (11wlww?w?) | Dy 384 (1,3, 252)
Ess (ii) (00w1w?1) Ds 1920 (1, 15, 240)
Esg (i) (w2001w20) Ds 384 (1,3, 252)

*The classifications for 2 x 3 and 2 x 4 self-dual matrix codes over 4 are open from

Morrison's classification.

20



Enumeration of Linearly Matrix-Inequivalent Self-dual Matrix

Codes over [

Size | Code | Construction | ¢ T G | Autzp (C) Wt Dist
2x2 | C1 6] 2 2] 4 (1,24,0)
Cs () 2 [13] 8 (1,8,16)
2x3 | D1 (@) 2 [ 2z (1,124,0)
Ds () 2 Co 30 (1,28,96)
Dy (i) 2| (20000 | G 12 (1,44,80)
Ds (i) 3| (20000 | & 120 (1,12,112)
Dy (i) 2| (0200) | G 20 (1,28,96)
Ds (i) 3| (2210) | & 80 (1,4,120)
D7 (i) 3| (82100 | & 48 (1,4,120)
2x4 | Er @) 2 D, 2 (1,624,0)
Ea 2 Da 240 (1,128, 496)
Ey 2 Dy 72 (1,144, 480)
Ey 2 Ds 3600 (1,32,592)
Es 2 D 1600 (1,24,600)
Eg 2 D7 1152 (1,24,600)
Eq 3 Da 450 (1,48,576)
Es 3 Ds 144 (1,64,560)
Eo 3 Ds 7200 (1,16,608)
Eo 3 Dy 200 (1,48,576)
Ey 3 D 4800 (1,8,616)
Eiz 3 D7 5760 (1,8,616)
o (i) 2 | (200000) | D7 1440 (1,24,600)
Eu 3| (221000) | Ds 2400 (1,0,624)
Es 3| (221000) | D7 2880 (1,8,616)
Eg 3 | (002000) | Dg 1800 (1,16,608)
Eir 3| (212000) | Ds 2400 (1,0,624)
Es 3| (122000) | D7 1920 (1,0,624)
Eyg 3 | (303100) | Dy 96 (1,24,600)
Ex 3 | (000200) | D7 800 (1,0,624)
En 3| (103200) | Ds 80 (1,0,624)
Ex 2 | (000030) | Ds 12 (1, 144, 480)
Eng 3| (000030) | Ds 144 (1,64,560)
Fay 3 | (000030) | Dy 120 (1,48,576)

21



Enumeration of Linearly Matrix-Inequivalent Self-dual Matrix

Codes over Fg = F,[a] where o® + a+1 =0

Size Code | Construction x G |Autp? (C)] Wt Dist

2% 2 @ 6) [T 448 (1, 63, 0)
(e} (i) (a3a) 1] 448 (1,7, 56)
[ (i) (aa3) 1) 448 (1,7, 56)
@ (if) (01) 1 896 (1,7, 56)
Cs (i) (a?a®) [11] 448 (1,7, 56)

2x3 Dy 6) G 28224 (1, 511, 0)
Dy 0) [ 448 (1, 63, 448)
D3 (i) (0a2aad) q 3136 (1, 119, 392)
Dy (i) (a0abat) [ 98 (1, 21, 490)
Dg (i) (a3adatad) [ 126 (1,7, 504)

*These classifications for self dual matrix codes over Fg are open from Morrison's

classification.

22



Enumeration of Linearly Matrix-Inequivalent Self-dual Matrix

Codes over Fy = F3[a] where o? +2a+2 =0

Size Code | Construction c x G [Autp? (C)] Wt Dist

2% 2 [ (i) o? 1 a?] 4 (1, 80, 0)
[ (i) a? 1a% 16 (1, 16, 64)

2 %3 Dy (i) a? &) 2 (1,728, 0)
D,y (i) a? [ 90 (1, 88, 640)
D3 (ii) ab (a?111) Q 576 (1, 8720)
Dy (i) a? (a?111) [ 160 (1, 8, 720)
Ds (i) a? (af111) Q 72 (1, 88, 640)
Dg (i) af (af111) G 720 (1, 24, 704)
Dy (i) a? | («20a21) [ 20 (1, 152, 576)

23



Codes over I3

Enumeration of Linearly Matrix-Inequivalent Self-dual

Matrix

Size Code Construction c X G \AutASADa[(C)\ Wt Dist

2 X2 [ () 5 [15] 4 (1, 168, 0)
[ (i) 5 [18] 24 (1,24, 144)

2x3 Dy 6] 5 & 2 (1, 2196, 0)
Dy (i) 5 [ 182 (1, 180, 2016)
D3 (i) 5 | (5000) ) 28 (1, 324, 1872)
Dy (i) 8 | (5000) (& 2184 (1, 36, 2160)
Ds (i) 5 | (4300) e} 156 (1, 180, 2016)
Dg (i) 8 | (6110) a 1872 (1, 12, 2184)
Dy (i) 8 | (1610) [ 336 (1,12, 2184)

*These classifications for self dual matrix codes over 13 are open from Morrison's

classification.

24



Concluding Remarks




Concluding Remarks

e Using the building-up constructions we are able to confirm and
extend the results of Morrison in 2015.

e However, we have stopped the classification of self-dual matrix
codes of larger sizes due to the lack of computing resource.

e It will be interesting to classify or construct more self-dual matrix
codes with larger sizes, i.e., matrix codes with four or more rows.

e The building-up constructions can also be used to construct optimal
self-dual codes of larger sizes over larger finite fields, in which not
much are known today.

25
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