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Codes over Z4

Z4 = {0, 1, 2, 3}. Codes ∅ 6= C ⊆ Zn4 .

A subgroup C of (Zn4 ,+) is called a linear codes over Z4 of
length n. If C has a minimum generator set with
. α generators of order 4; and
. β generators of order 2,
C is said to be of type 4α2β. In this case, |C| = 22α+β.

Cyclic codes over Z4 of length n: a linear code C over Z4 of
length n satisfies

(cn−1, c0, c1, . . . , cn−2) ∈ C, ∀(c0, c1, . . . , cn−1) ∈ C.
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Gray map from Z4 onto F2
2

Define φ : Z4 → F2
2 via

0 7→ 00, 1 7→ 01, 2 7→ 11, 3 7→ 10.

Define Lee weight on Z4 by
wL(0) = wH(0, 0) = 0, wL(1) = wH(0, 1) = 1
wL(2) = wH(1, 1) = 2, wL(3) = wH(1, 0) = 1.

Extend φ : Z4 → F2
2 to Φ : Zn4 → F2n

2 by

(a0, a1, . . . , an−1) 7→ (φ(a0), φ(a1), . . . , φ(an−1)).
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Gray map from Z4 onto F2
2

The Gray map Φ : Zn4 → F2n
2 is a bijection preserving distance

from (Zn4 ,Lee distance) onto (F2n
2 ,Hamming distance) and

preserves orthogonality.

For any code C ⊆ Zn4 , let D = Φ(C) ⊆ F2n
2 . D is called the

binary image of C which is a binary code of length 2n. In
particular, we have

Φ(C⊥) ⊆ D⊥.
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Gray map from Z4 onto F2
2

In particular, if C is a self-dual Z4-code of length n, the binary
image D = Φ(C) is a binary self-dual code of length 2n.

Moreover, the Hamming weight distribution of D is the same as
the Lee weight distribution of C, i.e.,

W
(H)
D (X,Y ) = W

(L)
C (X,Y ).
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A breakthrough in coding theory (cf. IEEE 1994)

In the early 1990s, a connection was made between linear codes
over Z4 and non-linear binary codes in the landmark paper:

Calderbank, A.R., Hammons Jr., A.R., Kumar, P.V., Sloane, N.J.A.

and Solé, P.: The Z4-linearity of Kerdock, Preparata, Goethals, and

related codes, IEEE Trans. Inform. Theory 40 (1994), 301–319.

For an example, the binary images of the Z4-dual codes of the
Kerdock codes are Preparata-like codes, having essentially the
same properties as Preparata’s original codes.
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Constructing binary codes from Z4-codes

It has been an efficient way to construct good binary codes
from Z4-codes with certain special structures (e.g., cyclic codes
and self-dual codes over Z4).

Therefore, it is an meaningful topic to study linear codes over
Z4 and Z2k (k ≥ 3) with certain algebraic structures. For
example, cyclic codes, negacyclic codes, constacyclic codes,
quasi-cyclic codes, quasi-twisted codes, . . . . . .
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Constructing binary codes from Z4-codes

Compared with existing rich theory for binary cyclic codes,
there are a lot of work to do for cyclic codes over Z4, especially,
for cyclic codes over Z4 of even length.
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Our goals

Let n be odd. In this talk, we consider cyclic codes over Z4 of
length 4n:

• Give a explicit representation for every cyclic code over Z4 of
length 4n and a complete classification for all these codes.

• Determine the dual code and its self-duality for every cyclic
code over Z4 of length 4n.

• Provide an efficient encoder for any cyclic code over Z4 of
length 4n (and their binary images).
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Cyclic codes over Z4 of even length

Abualrub and Oehmk in [1] determined the generators for cyclic
codes over Z4 for lengths of the form 2k, and Blackford in [2]
presented the generators for cyclic codes over Z4 for lengths of
the form 2n where n is odd. The case for odd n follows from
results in [3] and also appears in more detail in [9].

[1] T. Abualrub and R. Oehmke, On the generators of Z4 cyclic codes of length 2e,

IEEE Trans. IT 49 (2003).

[2] T. Blackford, Cyclic codes over Z4 of oddly even length, Discrete Appl. Math.

128 (2003).

[3] A. R. Calderbank and N. J. A. Sloane, Modular and p-adic cyclic codes, Des.

Codes Cryptogr. 6 (1995).

[9] V. S. Pless and Z. Qian, Cyclic codes and quadratic residue codes over Z4,

IEEE Trans. IT 42 (1996).
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Des. Codes Cryptogr. 39 (2006)

Dougherty and Ling in [8] determined the structure of cyclic
codes over Z4 for arbitrary even length giving the generator
polynomial for these codes, described the number and dual
codes of cyclic codes for a given length and presented the form
of cyclic codes that are self-dual.

[8] S. T. Dougherty and S. Ling, Cyclic codes over Z4 of even length, Des.

Codes Cryptogr. 39 (2006), 127–153.
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Des. Codes Cryptogr. 39 (2006)

Cyclic codes over Z4 of length 2kn ←→ ideals of Z4[x]

〈x2kn−1〉
. Let

R =
Z4[u]

〈u2k − 1〉
.

By x2kn − 1 = u2k − 1, where u = xn satisfies u2k = 1 in the
ring R, the following diagram commutes

R[x]
〈xn−u〉 ←→

Z4[x]

〈x2kn−1〉
↓ ↓
Rn ←→ Z2kn

4

.
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Des. Codes Cryptogr. 39 (2006)

Ideals of the ring R[x]
〈xn−u〉 ←→ ideals of Z4[x]

〈x2kn−1〉
.

u-constacyclic codes over R of length n ←→ cyclic codes over
Z4 of length 2kn.

Then the ideals of Z4[x]

〈x2kn−1〉
are determine by the following two

steps.
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Des. Codes Cryptogr. 39 (2006)

• For a positive integer m, and a monic basic irreducible
polynomial hm(x) in Z4[x] of degree m that divides x2m−1 − 1,
define the following Galois ring:

GR(4,m) =
Z4[x]

〈hm(x)〉
= {

m−1∑
i=0

aix
i | a0, a1, . . . , am−1 ∈ Z4}

in which the arithmetic is done modulo hm(x). Then
|GR(4,m)| = 4m.
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Des. Codes Cryptogr. 39 (2006)

Then determine all ideals and their annihilator of the ring

R4(u,m) =
GR(4,m)[u]

〈u2k − 1〉

= {
2k−1∑
j=0

αju
j | α0, α1, . . . , α2k−1 ∈ GR(4,m)}

in which the arithmetic is done modulo u2k − 1 (see Lemma 2.3,
Proposition 2.5 and Theorem 2.6 in [8]). In particular,

|R4(u,m)| = 42km.
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• Let M = min{l ∈ Z+ | 2l ≡ 1 (mod n)} and constructs a
Galois ring GR(4,M) of 4M elements. Let ζ denote a primitive
nth root of unity in GR(4,M).

As n is odd, there exists integer n′, 1 ≤ n′ ≤ 2k − 1, such that

nn′ ≡ 1 (mod 2k).
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Des. Codes Cryptogr. 39 (2006)

The map (DFT)

γ̂ :
Z4[x]

〈x2kn − 1〉
→

n−1⊕
l=0

GR(4,ml)[u]

〈u2k − 1〉

defined by
γ̂(c(x)) = (ĉl)

n−1
l=0 ,

is an injective homomorphism of rings from Z4[x]

〈x2kn−1〉
into the

direct product ring
⊕n−1

l=0
GR(4,ml)[u]

〈u2k−1〉
, where

ĉl = c(un
′
ζ l) =

n−1∑
i=0

2k−1∑
j=0

ci,ju
n′i+jζil ∈ GR(4,ml)[u]

〈u2k − 1〉
.
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• Let J denote a complete set of representatives of the
2-cyclotomic cosets modulo n and, for each α ∈ J , let mα

denote the size of the 2-cyclotomic coset J
(2)
α containing α, i.e.,

mα = |J (2)
α | where J (2)

α = {2lα (mod n) | l = 0, 1, . . .}.

Then n =
∑

α∈J |J
(2)
α |.
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Des. Codes Cryptogr. 39 (2006)

It is known that GR(4,ml)[u]

〈u2k−1〉
∼= GR(4,mα)[u]

〈u2k−1〉
for every l ∈ J (2)

α as

rings, for any c(x) =
∑n−1

i=0

∑2k−1
j=0 ci,jx

i+jn ∈ Z4[x]

〈x2kn−1〉
.

Furthermore, in [8] the authors defined

γ(c(x)) = (ĉα)α∈J ,

where

ĉα = c(un
′
ζα) =

n−1∑
i=0

2k−1∑
j=0

ci,ju
n′i+jζαi ∈ GR(4,mα)[u]

〈u2k − 1〉
.
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[8] Theorem 3.2

The map γ : Z4[x]

〈x2kn−1〉
→
⊕

α∈J
GR(4,mα)[u]

〈u2k−1〉
is a ring

isomorphism.

[8] Corollary 3.3

If C is a cyclic code of length 2kn over Z4, then C is isomorphic
to
⊕

α∈J Cα, where, for each α ∈ J , Cα is an ideal in the ring

R4(u,mα) = GR(4,mα)[u]

〈u2k−1〉
.

There are 29 cases for all ideals and their annihilators of
R4(u,mα) ([8] Theorem 5.3) for arbitrary positive integer k.
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In [8],

GR(4,ml) = {
ml−1∑
j=0

ajζ
jl | aj ∈ Z4, j = 0, 1, . . . ,ml − 1}.

Let α ∈ J . For any l ∈ J (2)
α , where 0 ≤ l ≤ n− 1, it need to

determine

ĉl ∈ R4(u,ml) =
GR(4,ml)[x]

〈x2k − 1〉
from

ĉα ∈ R4(u,mα) =
GR(4,mα)[x]

〈x2k − 1〉
.
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Then the inverse (determined by “Inverse discrete Fourier

transform”) γ−1 :
⊕

α∈J
GR(4,mα)[u]

〈u2k−1〉
→ Z4[x]

〈x2kn−1〉
of γ is given by

γ−1((ĉα)α∈J ) = Ψ

(
1

n
(ĉ(1), u−n′ĉ(ζ), . . . , u−(n−1)n′ĉ(ζn−1))

)
,

where ĉ(ζ l) =
∑n−1

h=0 ĉn−hζ
hl (in which ĉn = ĉ0) and
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Ψ :
(

Z4[u]

〈u2k−1〉

)n
→ Z2kn

4 is defined by

Ψ

2k−1∑
j=0

a0,ju
j , . . . ,

2k−1∑
j=0

an−1,ju
j


= (a0,0, a1,0, . . . , an−1,0, a0,1, a1,1, . . . , an−1,1,

. . . , a0,2k−1, a1,2k−1, . . . , an−1,2k−1).
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It may be some inconvenient to construct cyclic codes over Z4

of length 2kn by use of the representation given in [8], as the
following lacks:

• How to determine
GR(4,mα) = {

∑mα−1
j=0 ajζ

jα | aj ∈ Z4, j = 0, 1, . . . ,mα − 1}
explicitly?

• How to determine ĉl from ĉα ∈ R4(u,mα) = GR(4,mα)[x]

〈x2k−1〉
, for all

l ∈ J (2)
α ?
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[4] AAECC 27 (2016)

In fact,

GR(4,mα) =
Z4[y]

〈fα(y)〉
,

where fα(y) is the minimal polynomial of ζα in Z4[y] and

yn − 1 =
∏
α∈J

fα(y).

We can give an isomorphism from Z4[x]

〈x2kn−1〉
onto the direct ring∏

α∈J
Z4[y]/〈fα(y)〉
〈x2k−y〉

directly.

Hence we don’t need to determine ĉl from
ĉα ∈ R4(u,mα) = GR(4,mα)[x]

〈x2k−1〉
, for any l ∈ J (2)

α .
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AAECC 27 (2016)

Let A = Z4[y]
〈yn−1〉 . By x2kn − 1 = yn − 1, where y = x2k in the

ring Z4[x]

〈x2kn−1〉
, we have the following diagram

A[x]

〈x2k−y〉
= Z4[x]

〈x2kn−1〉
↓ ↓
A2k ←→ Z2kn

4

.

[4] Y. Cao, Y. Cao and Q. Li, Concatenated structure of cyclic
codes over Z4 of length 4n, Appl. Algebra in Engrg. Comm.
Comput. 10 (2016), 279–302.
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AAECC 27 (2016)

C is a cyclic code of length 2kn over Z4 if and only if C is an
ideal of the ring A[x]

〈x2k−y〉
, where

A =
Z4[y]

〈yn − 1〉

= {
n−1∑
i=0

aiy
i | a0, a1, . . . , an−1 ∈ Z4}

in which the arithmetic is done modulo yn − 1.
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Assume
yn − 1 = f1(y)f2(y) . . . fr(y),

where f1(y), f2(y), . . . , fr(y) are pairwise coprime monic basic
irreducible polynomials in Z4[y]. We assume deg(fi(y)) = mi

and denote

Ri =
Z4[y]

〈fi(y)〉
= {

mi−1∑
j=0

bjy
j | b0, b1, . . . , bmi−1 ∈ Z4}

in which the arithmetic is done modulo fi(y), for all i = 1, . . . , r.

Then A ∼= R1 ×R2 × . . .×Rr.
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AAECC 27 (2016)

Let 1 ≤ i ≤ r and denote Fi(y) = yn−1
fi(y) ∈ Z4[y].

Then there are polynomials ui(y), vi(y) ∈ Z4[y] such that
ui(y)Fi(y) + vi(y)fi(y) = 1. Set εi(y) ∈ A satisfying

εi(y) ≡ ui(y)Fi(y) = 1− vi(y)fi(y) (mod yn − 1).

and denote

Ai = εi(y)A =

〈
yn − 1

fi(y)

〉
EA.
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• Ai is a cyclic code over Z4 of length n having parity check
polynomial fi(y), and |Ai| = 4mi .

• The map

ϕi : b(y) 7→ εi(y)b(y) (∀b(y) ∈ Ri)

is a ring isomorphism from the Galois ring Ri onto the cyclic
code Ai.
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AAECC 27 (2016)

Let

Ri[x]

〈x2k − y〉
= {

2k−1∑
j=0

βjx
j | βj ∈ Ri, j = 0, 1, . . . , 2k − 1}

in which the arithmetic is done modulo x2k − y.

• Ci is a y-constacyclic code over Ri = Z4[y]
〈fi(y)〉 of length 2k if and

only if Ci is an ideal of the ring Ri[x]

〈x2k−y〉
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[4] Theorem 2.6

C is a cyclic code over Z4 of length 2kn if and only if for each
1 ≤ i ≤ r, there is a unique ideal Ci of Ri[x]

〈x2k−y〉
, such that

C = (A1�ϕ1C1)⊕ . . .⊕ (Ar�ϕrCr),

where

Ai�ϕiCi = {(ϕi(β0), ϕi(β1), . . . , ϕi(β2k−1)

| (β0, β1, . . . , β2k−1) ∈ Ci}

which is the concatenated code of Ai and Ci, for all i = 1, . . . , r.



Introduction
The existing results and methods

Our new approach

AAECC 27 (2016)

As n is odd, there is a positive integer e, 1 ≤ e < n, such that
2ke ≡ −1 (mod n). We denote

θi(y) = ye (mod fi(y)),

and set

πi = yex− 1 = θi(y)x− 1 ∈ Ri[x]/〈x2k − y〉.

From now on, let k = 2. Then all distinct y-constacyclic codes
Ci over the Galois ring Ri of length 22 = 4, i.e. all distinct
ideals of the ring Ri[x]

〈x4−y〉 , and their annihilating ideals are given

by one of the following 20 cases:
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[4] Theorem 3.3

case Ci |Ci| Ann(Ci) LC
1. 〈0〉 1 〈1〉 1

2. 〈1〉 28mi 〈0〉 1

3. 〈πj
i 〉 (j = 1, 2) 22mi(4−j) 〈π4−j

i + 2π
2−j
i 〉 2

4. 〈2〉 24mi 〈2〉 1

5. 〈2πs
i 〉 (s = 1, 2, 3) 2mi(4−s) 〈π4−s

i , 2〉 3

6. 〈πi + 2h〉 (h ∈ Ti \ {0}) 26mi 〈π3
i + 2πi(1 + πih)〉 2mi − 1

7. 〈π2
i + 2πih〉 24mi 〈π2

i + 2(1 + πih)〉 2mi − 1
(h ∈ Ti \ {0})

8. 〈π2
i + 2(h + πig)〉 24mi 〈π2

i + 2(1 + h + πig)〉 22mi − 2mi+1

(h ∈ Ti \ {0, 1}, g ∈ Ti)
9. 〈π2

i + 2(1 + πih)〉 24mi 〈π2
i + 2πih〉 2mi − 1

(h ∈ Ti \ {0})
10. 〈π3

i + 2πi(3 + πih)〉 22mi 〈πi + 2h〉 2mi − 1
(h ∈ Ti \ {0})



Introduction
The existing results and methods

Our new approach

AAECC 27 (2016)

[4] Theorem 3.3

case Ci |Ci| Ann(Ci) LC

11. 〈π3
i + 2h〉 (h ∈ Ti) 24mi 〈π3

i + 2h〉 2mi

13. 〈πj
i + 2π

j−2
i 〉 (j = 2, 3) 22mi(4−j) 〈π4−j

i 〉 2

14. 〈πj
i , 2〉 (j = 1, 2, 3) 2mi(8−j) 〈2π4−j

i 〉 3

15. 〈π2
i + 2, 2πi〉 25mi 〈π3

i , 2π
2
i 〉 1

16. 〈π3
i , 2π

2
i 〉 23mi 〈π2

i + 2, 2πi〉 1

17. 〈π3
i + 2πi, 2π

2
i 〉 23mi 〈π2

i , 2πi〉 1

18. 〈π2
i , 2πi〉 25mi 〈π3

i + 2πi, 2π
2
i 〉 1

19. 〈π2
i + 2h, 2πi〉 25mi 〈π3

i + 2πi(1 + h), 2π2
i 〉 2mi − 2

(h ∈ Ti \ {0, 1})
20. 〈π3

i + 2πih, 2π
2
i 〉 23mi 〈π2

i + 2(1 + h), 2πi〉 2mi − 2
(h ∈ Ti \ {0, 1})

where Ti = {
∑mi−1

j=0 tjy
j | t0, t1, . . . , tmi−1 ∈ {0, 1}} and LC is

the number of codes in the same row.
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There are still some inconvenient to construct cyclic codes over
Z4 of length 4n by use of the representation given in [4], as we
have not to give the expression of

πi = yex− 1 = θi(y)x− 1 ∈ Ri[x]/〈x4 − y〉

explicitly, for each different i: 1 ≤ i ≤ r.
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When n = 7, we have y7 − 1 = f1(y)f2(y)f3(y) where
f1(y) = y − 1, f2(y) = y3 + 2y2 + y + 3 and
f3(y) = y3 + 3y2 + 2y + 3. In page 296 of [4], we have

. π1 = x− 1 ∈ R1[x]/〈x4 − y〉;

. π2 = (y2 + 3y + 3)x− 1 ∈ R2[x]/〈x4 − y〉;

. π3 = (2y2 + 3y + 3)x− 1 ∈ R3[x]/〈x4 − y〉.
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Main idea

Recall that fi(y) is a monic basic irreducible divisor of yn − 1 in
Z4[y], deg(fi(y)) = mi, and

Ri =
Z4[y]

〈fi(y)〉
.

In [4], we determine the ideals of Ri[x]
〈x4−y〉 by the ring isomorphism

Ri[u]

〈u4 − 1〉
→ Ri[x]

〈x4 − y〉
via u 7→ yex (mod fi(y)).
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Main idea

In fact, we have

Ri[x]

〈x4 − y〉
∼=

Z4[x, y]

〈fi(y), y − x4〉
∼=

Z4[x]

〈fi(x4)〉
.

Then will determine the ideals of the ring

Ki =
Z4[x]

〈fi(x4)〉

directly. Denote Ki = F2[x]

〈f i(x)4〉 = Ki (mod 2) and

Ti = {
∑mi−1

j=0 tjx
j | tj ∈ {0, 1}, j = 0, . . . ,mi − 1}.
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Properties of the ring Ki = Z4[x]
〈fi(x4)〉

Lemma 3.3

There exists a unique ordered pair (wi,0(x), wi,1(x)) of elements

in Ti = “ F2[x]

〈f i(x)〉” such that

fi(x)4 = 2fi(x)2
(
wi,0(x) + wi,1(x)f i(x)

)
in Ki and wi,0(x) 6= 0.
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Ideals of the ring Ki = Z4[x]
〈fi(x4)〉

Lemma 3.5

Let C be a nonzero ideal of Ki. Then there is a unique ordered
pair (l, s) of integers, 0 ≤ s ≤ l ≤ 4, and there exists v(x) ∈ Ki
such that

C = 〈fi(x)l + 2v(x), 2f i(x)s〉 with |C| = 2mi(8−(l+s)).
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Ideals of the ring Ki = Z4[x]
〈fi(x4)〉

Theorem 3.6

All distinct ideals of the ring Ki = Z4[x]
〈fi(x4)〉 and their annihilating

ideals are given by the following table (10 cases)

L Ci |Ci| Ann(Ci)
1 • 〈0〉 1 〈1〉
1 • 〈1〉 28mi 〈0〉
4 • 〈2f i(x)s〉 (s = 0, 1, 2, 3) 2mi(4−s) 〈fi(x)4−s, 2〉
3 • 〈fi(x)l, 2〉 (l = 1, 2, 3) 2mi(8−l) 〈2f i(x)4−l〉
2mi • 〈fi(x) + 2h(x)〉 26mi 〈fi(x)3 + 2f i(x)(wi,0(x)

+ϑi(x)f i(x))〉
ϑi(x) = wi,1(x) + h(x)

2mi • 〈fi(x)2 + 2h(x), 2f i(x)〉 25mi 〈fi(x)3 + 2f i(x)ti(x),

2f i(x)2〉
ti(x) = wi,0(x) + h(x)
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Ideals of the ring Ki = Z4[x]
〈fi(x4)〉

Theorem 3.6 (continue)

L Ci |Ci| Ann(Ci)

4mi • 〈2(h0(x) + h1(x)f i(x)) 24mi 〈2(δi,0(x) + δi,1(x)f i(x))
+fi(x)2〉 +fi(x)2〉

δi,j(x) = wi,j(x) + hj(x)

2mi • 〈fi(x)3 + 2h(x), 2f i(x)〉 24mi 〈fi(x)3 + 2h(x), 2f i(x)〉

2mi • 〈fi(x)3 + 2f i(x)h(x), 23mi 〈fi(x)2 + 2ti(x), 2f i(x)〉
2f i(x)2〉 ti(x) = wi,0(x) + h(x)

2mi • 〈fi(x)3 + 2f i(x)(wi,0(x) 22mi 〈fi(x) + 2ϑi(x)〉
+h(x)f i(x))〉 ϑi(x) = wi,1(x) + h(x)

where L is the number of ideals C in the same row and
h(x), h0(x), h1(x) ∈ Ti. Therefore, the number of ideals in Ki is
equal to 9 + 5 · 2mi + 4mi .
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Idempotents of the ring B = Z4[x]/〈x4n − 1〉

By yn − 1 = f1(y)f2(y) . . . fr(y), we have

x4n − 1 = (x4)n − 1 = f1(x4)f2(x4) . . . fr(x
4).

As ui(y)Fi(y) + vi(y)fi(y) = 1, where Fi(y) = yn−1
fi(y) and

ui(y), vi(y) ∈ Z4[y], we define

ei(x) ≡ ui(x4)Fi(x
4) = 1− vi(x4)fi(x

4) (mod x4n − 1).

Then e1(x) + . . .+ er(x) = 1, ei(x)2 = ei(x) and ei(x)ej(x) = 0
for all 1 ≤ i 6= j ≤ r in the ring B = Z4[x]/〈x4n − 1〉.
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Cyclic codes over Z4 of length 4n

C is a cyclic code over Z4 of length 4n, i.e. C is an ideal of

B =
Z4[x]

〈x4n − 1〉

if and only if for each integer i, 1 ≤ i ≤ r, there is a unique
ideal Ci of the ring Ki = Z4[x]

〈fi(x4)〉 such that

C =

r⊕
i=1

ei(x)Ci =

r∑
i=1

ei(x)Ci (mod x4n − 1).
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Encoder for any cyclic code over Z4 of length 4n

Lemma 4.1

Let Ci = 〈fi(x)l + 2v(x), 2f i(x)s〉 an ideal of Ki, where
v(x) ∈ Ki and 0 ≤ s ≤ l ≤ 4. For any

a = (a0, a1, . . . , a(4−l)mi−1) ∈ Z(4−l)mi
4 and

b = (b0, b1, . . . , b(l−s)mi−1) ∈ Z(l−s)mi
2 ), we define a map % by

%(a, b) =

(4−l)mi−1∑
j=0

ajx
j
(
fi(x)l + 2v(x)

)
+

(l−j)mi−1∑
t=0

2btx
tf i(x)s

Then % is an isomorphism of additive groups from

Z(4−l)mi
4 × Z(l−s)mi

2 onto Ci. Hence Ci is an abelian group of
type 4(4−l)mi2(l−s)mi .
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Theorem 4.2

Let C be a cyclic code over Z4 of length 4n with canonical form
decomposition C =

⊕r
i=1 Ci, where Ci = ei(x)Ci ⊆ C and Ci is

an ideal of Ki listed by Theorem 3.6. Then for each integer i,
1 ≤ i ≤ r, the type of Ci is given by the following table:
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Theorem 4.2 (continue)

Case Ci the type of Ci
1. 〈0〉 4020

2. 〈1〉 44mi20

3. 〈2f i(x)s〉 (s = 0, 1, 2, 3) 402(4−s)mi

4. 〈fi(x)l, 2〉 (l = 1, 2, 3) 4(4−l)mi2lmi

5. 〈fi(x) + 2h(x)〉 43mi20

6. 〈fi(x)2 + 2h(x), 2f i(x)〉 42mi2mi

7. 〈fi(x)2 + 2(h0(x) + h1(x)f i(x)) 42mi20

8. 〈fi(x)3 + 2h(x), 2f i(x)〉 4mi22mi

9. 〈fi(x)3 + 2f i(x)h(x), 2f i(x)2〉 4mi2mi

10.
〈
fi(x)3 + 2f i(x)

(
wi,0(x) + h(x)f i(x)

)〉
4mi20

where h(x), h0(x), h1(x) ∈ Ti.
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Encoder for any cyclic code over Z4 of length 4n

Theorem 4.2 (continue)

Precisely, an encoder of the subcode Ci is given by the following:

Case 1. Ci = {0}.

Case 2. Ci = {
∑4mi−1
j=0 ajx

jei(x) | aj ∈ Z4, j = 0, 1, . . . , 4mi − 1}.

Case 3. Ci = {
∑(4−s)mi−1
t=0 2btx

tf i(x)
sei(x) | b0, b1, . . . , b(4−s)mi−1 ∈ Z2}.

Case 4. Ci = {
∑(4−l)mi−1
j=0 ajx

jfi(x)
lei(x) +

∑lmi−1
t=0 2btx

tei(x) | aj ∈
Z4, bt ∈ Z2, j = 0, 1, . . . , (4− l)mi − 1 and t = 0, 1, . . . , lmi − 1}.

Case 5. Ci = {
∑3mi−1
j=0 ajx

j (fi(x) + 2h(x)) ei(x) | aj ∈ Z4, j = 0, 1, 2, . . .,

3mi − 1}.
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Theorem 4.2 (continue)

Case 6.

Ci = {
2mi−1∑
j=0

ajx
j (fi(x)2 + 2h(x)

)
ei(x) +

mdi−1∑
t=0

2btx
tf i(x)ei(x)

| aj ∈ Z4, bt ∈ Z2, j = 0, 1, . . . , 2mi − 1 and t = 0, 1, . . . ,mi − 1}.

Case 7. Ci = {
∑2mi−1
j=0 ajx

j
(
fi(x)

2 + 2
(
h0(x) + h1(x)f i(x)

))
ei(x) | aj ∈

Z4, j = 0, 1, . . . , 2mi − 1}.

Case 8.

Ci = {
mi−1∑
j=0

ajx
j (fi(x)3 + 2h(x)

)
ei(x) +

2mi−1∑
t=0

2btx
tf i(x)ei(x)

| aj ∈ Z4, bt ∈ Z2, j = 0, 1, . . . ,mi − 1 and t = 0, 1, . . . , 2mi − 1}.
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Encoder for any cyclic code over Z4 of length 4n

Theorem 4.2 (continue)

Case 9.

Ci = {
mi−1∑
j=0

ajx
j (fi(x)3 + 2f i(x)h(x)

)
ei(x) +

mi−1∑
t=0

2btx
tf i(x)

2ei(x)

| ajs ∈ Z4, bt ∈ Z2, j = 0, 1, . . . ,mi − 1 and t = 0, 1, . . . ,mi − 1}.

Case 10.

Ci = {
di−1∑
j=0

ajx
j (fi(x)3 + 2f i(x)

(
wi,0(x) + h(x)f i(x)

))
ei(x)

| aj ∈ Z4, j = 0, 1, . . . ,mi − 1}.
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Theorem 4.2 (continue)

Moreover, if the subcode Ci is of type 4k0,i2k1,i for all 1 ≤ i ≤ r,
then C is of type

4
∑r
i=1 k0,i2

∑r
i=1 k1,i .
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Self-dual cyclic codes over Z4 of length 4n

For any polynomial f(y) =
∑d

j=0 cjy
j ∈ Z4[y] of degree d ≥ 1,

the reciprocal polynomial of f(y) is defined as

f̃(y) = f̃(y) = ydf(
1

y
) =

d∑
j=0

cjy
d−j .

Then f(y) is said to be self-reciprocal if f̃(y) = δf(y) for some
δ ∈ Z×4 = {1,−1}. After a rearrangement of f1(y), . . . , fr(y)
there are integers λ, ε such that

. λ ≥ 1, ε ≥ 0 and λ+ 2ε = r;

. fi(y) is reciprocal, for all i = 1, . . . , λ;

. f̃λ+j(y) = δλ+jfλ+ε+j(y), for all j = 1, . . . , ε.
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Self-dual cyclic codes over Z4 of length 4n

Let C be a cyclic code over Z4 of length 4n with canonical form
decomposition C = ⊕ri=1ei(x)Ci, where Ci is an ideal of Bi.
Then C is self-dual if and only if for each integer i, 1 ≤ i ≤ r,
Ci satisfies one of the following conditions.

(i) If 1 ≤ i ≤ λ, Ci is given by one of the following three cases:

(i-1) Ci = 〈2〉.

(i-2) Ci = 〈fi(x)2 + 2(h0(x) + h1(x)f i(x))〉, where
h0(x), h1(x) ∈ Ti = {

∑mi−1
j=0 ajx

j | a0, a1, . . . , ami−1 ∈ {0, 1}} s.t.

h0(x) + x2mi(wi,0(x−1) + h0(x−1)) ≡ 0 (mod 〈f i(x), 2〉),

h1(x) + xmi(wi,1(x−1) + h1(x−1)) ≡ 0 (mod 〈f i(x), 2〉).
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(i-3) Ci = 〈fi(x)3 + 2h(x), 2f i(x)〉, where h(x) ∈ Ti satisfying
the following condition:

h(x) + x3mih(x−1) ≡ 0 (mod 〈f i(x), 2〉).

(ii) If i = λ+ j where 1 ≤ j ≤ ε, (Ci, Ci+ε) is given by one of
the following eleven cases:

(ii-1) Ci = 〈0〉 and Ci+ε = 〈1〉;

(ii-2) Ci = 〈1〉 and Ci+ε = 〈0〉;

(ii-3) Ci = 〈2f i(x)s〉 and Ci+ε = 〈fi+ε(x)4−s, 2〉, where
s = 0, 1, 2, 3;

(ii-4) Ci = 〈fi(x)l, 2〉 and Ci+ε = 〈2f i+ε(x)4−l〉, where l = 1, 2, 3;
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(ii-5) Ci = 〈fi(x) + 2h(x)〉 and

Ci+ε =
〈
fi+ε(x)3 + 2f i+ε(x)

(
x2miwi,0(x−1) + ϑ̂i(x)f i+ε(x)

)〉
,

where ϑ̂i(x) = xmi(wi,1(x−1) + h(x−1)) and h(x) ∈ Ti;

(ii-6) Ci = 〈fi(x)2 + 2h(x), 2f i(x)〉 and

Ci+ε =
〈
fi+ε(x)3 + 2f i+ε(x)t̂i(x), 2f i+ε(x)2

〉
,

where t̂i(x) = x2mi(wi,0(x−1) + h(x−1)) and h(x) ∈ Ti;
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(ii-7) Ci = 〈fi(x)2 + 2(h0(x) + h1(x)f i(x))〉 and

Ci+ε =
〈
fi+ε(x)2 + 2(δ̂i,0(x) + δ̂i,1(x)f i+ε(x))

〉
,

where δ̂i,0(x) = x2mi(wi,0(x−1) + h0(x−1)),

δ̂i,1(x) = xmi(wi,1(x−1) + h1(x−1)) and h0(x), h1(x) ∈ Ti;

(ii-8) Ci = 〈fi(x)3 + 2h(x), 2f i(x)〉 and

Ci+ε =
〈
fi+ε(x)3 + 2x3mih(x−1), 2f i+ε(x)

〉
,

where h(x) ∈ Ti;
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(ii-9) Ci = 〈fi(x)3 + 2f i(x)h(x), 2f i(x)2〉 and

Ci+ε =
〈
fi+ε(x)2 + 2t̂i(x), 2f i+ε(x)

〉
,

where t̂i(x) = x2mi(wi,0(x−1) + h(x−1)) and h(x) ∈ Ti;

(ii-10) Ci = 〈fi(x)3 + 2f i(x)(wi,0(x) + h(x)f i(x))〉 and

Ci+ε =
〈
fi+ε(x) + 2ϑ̂i(x)

〉
,

where ϑ̂i(x) = xmi(wi,1(x−1) + h(x−1)) and h(x) ∈ Ti.
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Self-dual cyclic codes over Z4 of length 28

We list all distinct 339 self-dual codes over Z4 of length 28.

Let dH , dL and dE be the minimum Hamming distance, Lee
distance and Euclidean distance of a Z4-code, respectively.
Among the 339 self-dual codes over Z4 of length 28, we have 50
new good codes with basic parameters
(28, |C| = 228, dH = 4, dL = 8, dE = 8), these self-dual and cyclic
Z4-codes do not exist in [11] and [14]

[11] M. Shi, L. Qian, L. Sok, N. Aydin, P. Solé, On constacyclic codes over

Z4[u]/〈u2 − 1〉 and their Gray images, Finite Fields Appl. 45 (2017), 86–95.

[14] Database of Z4 codes [online], http://www.z4codes.info (accessed on 03

September 2016).
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Thank you for your attention!
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