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Motivation

Motivation of our study

@ In 1973 Delsarte derived n linear inequalities, which are called linear
programming bounds, that should be satisfied by all codes of length n.

@ The first inequality, which is called Plotkin’s bound, was obtained by

Plotkin in 1960. And it can be proved by counting the number of (?) or

<(1)) in a ‘what we call’ codebook of the code in TWO ways.

@ Now natural question arises: Can we prove Delsarte’s other inequalities
by a counting method?

@ We will see in a moment that Plotkin’s idea can be FAR
GENERALIZED, and can be applied to other problems of coding theory
in a ‘slightly modified’ form.
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Binary case

The codebook of a code

@ Let C be a binary (n, M) code with distance distribution {A;}/L,.

@ Consider C as a codebook, i.e., Cis an (0, 1)-matrix of size M x nin
which each codeword ¢ € C is a row.
n

—C ——

—Ccy —

Figure: C as a codebook
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Binary case

Decomposition of Krawtchouk polynomial

Even and odd Krawtchouk polynomial

@ We introduce the even (resp. odd) Krawtchouk polynomials by

k
e ()5)
j=0

Jj=even

e £()(5)
LO

Jj=odd

@ The ordinary Krawtchouk polynomial which is defined by

=3 () ()

becomes P/ (x; n) — P, (x;n) and P (x; n) + P, (x;n) = (}).
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Binary case

Delsarte’s Linear Programming Bounds for binary codes

We state Delsarte’s Linear Programming Bounds for binary codes.

Theorem (LP bounds for binary codes)

(a)

(b)

_ZPK (i; n)A; <—2MZ(k>,

M if Mis even, — {M("Zz) if M is even,
), —

where My = ¢ 4
1 {'”21 if M is odd, W=DFif Mis odd.

(1)
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Binary case

Delsarte’s Linear Programming Bounds for binary codes-Cont.

@ Equation (2) — (1) becomes the original Delsarte’s linear programming
bounds:

- (2) becomes

2M,
M( ) <ZP’< (i; n)A;,

- and —(1) becomes

om, ( ) ZPk (i: A
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Binary case

Remark-Cont.

- By adding them, we obtain

n\ _2M,—2M, (n S
() <2524 (7) <

- and it becomes

n
> Pu(izn)A >0, k=0,1,...,n,
i=0
- which is the original Delsarte’s linear programming.

@ Hence our theorem is “a little" better than the original Delsarte’s linear
programming.

@ Actually it gives that

0 if M is even,

n
S OPdimA =, (0
P | if M is odd.
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Binary case

Proof of Theorem by codebook counting

@ We consider C as a codebook and count the number of 2 x k
submatrices of C which has odd number of 1s in TWO ways.

@ We begin with row computation:

n
—K

u

M v

Figure: The contribution from rows u, v
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Binary case

Proof of Theorem-Cont.

- The contribution from two rows u, v becomes

£l0)

- Therefore total contribution from the rows becomes

SR

u#v j=odd

J

- and finally, by collecting all pairs with d(u, v) = i, it becomes

S>> P;(i;n):MZP;(/;n)A,

i=1 u,veC
d(u,v)=i
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Binary case

Proof of Theorem-Cont.

@ We next consider column computation:

iy p i
1
1
wt(u{1 +t u{k)

1
M 0
0

Ul 7 / /

u, u, u; uj, + -+ uj,

Figure: The contribution from columns iy, o, . . ., ix
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Binary case

Proof of Theorem-Cont.

- The contribution from columns iy, i, . . . , ix becomes
2wt(uj, + -+ + U ) [M — wt(uj, + - + U )]
- Therefore the total contribution from columns becomes
n
2 > wi(up + -+ UM — wi(up - )] < 2My <k>
i <lp <.+ <l

if M is even,
if M is odd,

S

+
2

-

)

- Equality holds if and only if wt(uj, +--- + u; ) = {

forall it < i < -+ <.
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g-ary case

Delsarte’s Linear Programming Bounds for g-ary codes

Theorem (Linear Programming Bounds for g-ary codes)

Fork =1,2,---  n, we have

n
> Pi(izm)A; > 0,

i=0
where Px(i; n) is defined by

, S i\ (n—i

j=0
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g-ary case

Delsarte’s Linear Programming Bounds for g-ary codes-Cont.

@ For k =0, Po(i; n) = (g — 1)" > 0 for all i. Therefore the inequality also
holds for k = 0.

@ Px(i; n) is called the g-ary Krawtchouk polynomial. It is known that

Pu(iin)= > Au-v)

wt(v)=k
where u is a vector of wi(u) = i.

- Here ) : Fq — S' is defined as follows: We know g = p” for some prime
p.
A(x) = ¢
where ( is a primitive p-th root of unity, and Tr is the trace map of GF(q)
into GF(p).
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g-ary case

Notation

@ Fora=(ay,---,a) € (F;), we introduce

@ N(a)=[{b=(bi,-,b) € (FgY|b-a# 0},

@ Z(a)=|{b= (b1, - ,by) € (Fg)|b-a=0}|.

® N(a) = &[(g— 1) - (1],

® Z(a)=(q-1) - N(@) = {(q— 1Y + ' (1.

@ Notice that these values are independent of the choice of ain (F;)'.
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g-ary case

Target to count

Codebook of a g-ary code

@ Let C be a g-ary code of length n with cardinality M.

@ Consider C as a codebook, i.e., C = (¢mi) is an M x n matrix over Fg.
@ Let Abe a2 x k submatrix of C with rows a and b,

@ and o an element in (F5)~.

Our target

@ We are going to count the number of pairs (A, ) suchthata - a # b- «
in TWO ways.
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g-ary case

Comparison with binary case

Target again
@ We are going to count the number of pairs (A, «)
- where
A— Cmiy s Cmips * * * 5 Cmig
Ciiys Cli, =+ > Cliy, )’
withm#£/land iy < b < --- < g,

- and a = (a1, ,ax) € (F5)k
- such that ayCmi, + 2Cmi, + - - - Ak Cmi, # @1Cli; + 2Cili, + - - - A Cij, .

binary case

- If g =2, then o becomes (1,1,--- ,1).

- Therefore, the number of such pairs reduced to the numbers of 2 x k
submatrices of C which contain odd number of 1s.
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g-ary case

Decomposition of g-ary Krawtchouk polynomial

Even and odd g-ary Krawtchouk polynomial

@ We introduce the odd (resp. even) g-ary Krawtchouk polynomials by

Pi (i) = Z—[(q (g 1)“()(/2_9’

Pe(isn) = (g —1)" (Z) — Py (i n).

@ When g = 2, it reduced to binary even (resp. odd) Krawtchouk
polynomial, namely

Py (i;n) = /Ej:()( >
P (i;n) = Izk; (;) (Z:)

Jj=even
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g-ary case

Decomposition of g-ary Krawtchouk polynomial-Cont.

@ PG + P (iin) = Xy 1= (@ = 1) ()

(b) Py (i:n) — Py (is n) = Pi(n; ).

v

@ Can we do a similar job for other ‘good’ graphs or association schemes?

@ We have decomposed ‘orthogonal polynomials’ for Hamming graphs
H(n,2) and H(n, q).
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g-ary case

More notation

@ Write Fg = {0 = wy, wa,--- , Wg}.
@ Fora=(ay, - ,am) € F¥, we define

xm(a) = |{jla; = wm}|.

@ Thus we trivially have that Y7 _, xm(a) = M.

Definition of S(k)

@ We are also interested in the sum S(k) defined by S(k) =

Com<t xml(@aUf 4 -+ axti )xi(ea by + -+ o) ).
i <ip <+ <k

Zae(mg)k 2

@ Later we will maximize this term!
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g-ary case

Sketch of proof of g-ary LP bound

@ We count the number S; (k) of pairs (A, a) suchthata -« # b - ain
TWO ways.

@ By row counting, we obtain
Si(k) = 2(‘7 MZP (n; i)A 3)

@ By column counting, we obtain
Si(k) = 25(k). (4)

C foIIows from (3), (4) and above proposmon that
S P (i mAi = —(M = 1)(q — 1)*nk + = 1)Ms(k)'

@ By maximizing S(k), we deduce that S(k) < (g —1)*(3) (;) (%)? and
the result follows.
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Binary case

Codebook of a constant weight code

Here we will study the codebook of a constant weight code. Again we begin
with binary case.

Codebook of a constant weight code

@ Let C be a binary code of length n, cardinality M in which every
codeword has constant weight, say w.

@ We may consider C as a binary matrix of size M x n in which every row
has w number of 1s.
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Binary case

1-row k-column formula

1-row k-column formula

@ We have
> o wt(ul + -+ ui) = MP (w; n),

where the sum is taken over all distinct k columns uf, - - - , uy of C.

- We count the number of 1 x k submatrices of C in two ways.

- Row computation: Each row has w 1s and n — w 0s. Hence the
contribution from each row becomes

k w n—w _
S (1) () =rromn

j=odd

and total contribution becomes MP,” (w; n).

- Column computation: Take any k columns, say i, - - - ,ix of C. The
contribution from these columns becomes wi(uj, + - - - + uj, ). Hence the
result.
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Binary case

2-row k-column formula

2-row k-column formula

@ We have

> Py (2iin)Ay < %[(( <:>)fk)Qk(MQk)+fk(C7k+1)(qu -1l

=

@ and we also have

— > Pi(2i;n)Ay < %[(( (Z)) — 1) k(M — qx)]

+ 2@+ 1M~ g 1)1(M1)(Z>,
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Binary case

2-row k-column formula-Cont.

2-row k-column formula

@ where gk and r, are the quotient and the remainder, respectively, when
dividing MP, (w; n) by (7).

@ There we can write
_ n
MP, (w; n) = gk <k> + rg

with 0 < rx < (}).
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Binary case

Proof of 2-row k-column formula

Idea of proof

@ We count the number of 2 x k submatrices of C which has odd number
of 1sin TWO ways.

@ In this process we use the result of 1-row k-column formula intensively.

Sketch of proof

@ Row computation: The contribution from rows u, v becomes

u, v)\ [(n—d(u,v)
=2 )0”)

u#v j=odd
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Binary case

Proof of 2-row k-column formula-Cont.

Sketch of proof-Cont.

@ Therefore the total contribution from the rows becomes

n n
S > Po@iin) =M P (2i;n)Aqx
i:% d(u,v)=2i /:g
@ We next consider column computation:
- The contribution from columns iy, i, . . . , ix becomes
wt(uj, + -+ + U ) [M — wt(ui, + -+ ujp)).

- Therefore the total contribution from the rows becomes

2 > wh(up + -+ UM — wi(up + -+ up)]

iy <lp<--- <l
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Binary case

Proof of 2-row k-column formula-Cont.

Sketch of proof-Cont.

- We want to maximize the last sum, and consider the distribution of all

possible weights
wi(ui, + -+ + uj)
where the k columns iy, io, . . ., ik run over all possibilities.

- We conclude that the sum maximized when these weights are ‘almost
equally’ distributed.

- We know from 1-row k-column formula that the sum of possible (})
weights is MP, (w; n).

- Write MP, (w; n) = gk (}) + fk, With 0 < rx < (7). Then the sum
become maximum when rx weights equal to gk + 1, and the remaining
(}) — r« weights equal to gx.

- We finally conclude that the total contribution from the columns

< 2[(( <Z)) — 1) k(M — k) + k(g + 1)(M — gk — 1)].
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g-ary case

LP-bound for g-ary constant weight codes

@ For a g-ary code of length n, cardinality M, constant weight w, and
0 < k < n, we have

; Py (i; n)A; < ﬁ T(k),

@ and

-2 PEGimA < =M= 1)(g - 1) <Z> om0

@ The value T(k) can be easily computed when g, n, w, M, k are given.
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g-ary case

@ We apply LP bound for constant weight codes, and improve upper
bounds of A(n, d, w), n < 28 for 22 cases.

@ We apply LP bound for g-ary constant weight codes, and proved that
As(9,3,7) < 575. Previously known best upper bound was
As(9,3,7) < 576.

@ We developed improved semidefinite programming bound for codes,
and improve upper bounds of A(n, d), n < 28 for 2 cases.

@ We developed improved semidefinite LP bound for constant weight
codes, and improve upper bounds of A(n, d, w), n < 28 for 23 cases.

@ We still don’t know what is the counter part of semidefinite programming
bound in codebook counting!!
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MacWilliams Identity

From now on, we will provide a combinatorial proof of MacWilliams identity
from codebook counting. We only consider binary case.

Review of MacWilliams identity

@ Let C be a binary [n, k] code with weight distribution {A;}i—o.1,... ». Let
{Bi}i=0.1.... .n be the weight distribution of its dual code C*.

@ Let We(x,y) (resp. Wei (X, y)) be corresponding weight enumerator of
C (resp. C1).
@ MacWilliams identity states that

We(x,y) = |CJ-|WCL(X+}/: -Y)

@ By definition MacWilliams identity becomes

n

> AxY = S Bl ) e =y ©

i=0 i=0
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Reformulation of MacWilliams Identity

Reformulation of MW

@ Putting x = 1 in (5) and use the fact that C is an [n, k] code, we obtain

n n

. 1 o .
> Ay = = > B(1+y)"'(1-y).
i=0 i=0

@ We set

DAY =D aly-1),
i=0 i=0

@ and set

on—k (1 +y Zb/(y_1

@ Then MacWilliams identity is equivalentto a, = b,,v =0,1,--- , n.
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MacWilliams Ide

Reformulation of MW-Cont.

@ By applying the linear operator jy—",,|y:1, we obtain

n

a, =Y i(i—1)--(i—v+1)A.

i=v
@ Similarly we obtain

b,, :2;(_,, Z(—1)’ v! (n—l)'

pars (=" (n—v)

@ By equating a, and b,, we finally obtain

i=0 i=0

i <II/> A =2k i(—ﬂi <::II/> B;.
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MacWilliams Identity from a codebook

@ Putting y = 1 in (5) and applying a similar method, we finally conclude
that

@ MacWilliams identity is equivalent to

Sk A =2k n(f1)i n—i B,v=0,1,---,n,
v n—v

i=0 i=0

@ andto
" fn—i " fn—i
_ o _
EO <nV>Bi:2 EO< y >A,‘,I/=071,---,n.
1= 1=

@ And these identities can be obtained by counting the number of 1 x v
submatrices (1,1,---,1) and (0,0, ,0) of the codebook in TWO
ways.
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attention!
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