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Projective plane PG(2, q) over F,

Let IF, be the finite field of order ¢q. The set of n-tuples
Fy ={(z1,22,...,25) | 7 € Fg}

is the n-dimensional vector space over [F,.
Let PG(2, q) be the projective plane over [, which consists of all
lines through the origin of Fg over [, that is,

(Fg \ {(Oa 0, 0)}) / ~

where (a,b,c) ~ (z,y,z) <= (a,b,c) = \(x,y, z) for some
A e g\ {0}
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We can express PG(2,q) as
PG(2,q) ={(a,b,1) | a,b e Fs} U{(a,1,0) | a € F;} U{(1,0,0)}.
Thus we have |PG(2,q)| = ¢* + ¢+ 1.
The linear equation
ar+by+cz=0, a,bcelF, (a,bc)#(0,0,0)

is the equation of a line £ in PG(2,q), simply denoted ¢ = [a, b, c],
ie.,

0 := {(z0, 21, 22) € PG(2,q) | axo + by + cxa = 0}.



Introduction
00®000000000000000000

Example 1.

(1) The projective plane PG(2,2) consists of 7 points and 7 lines.
The set of points in PG(2,2) is

{(0,0,1),(0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1, 1)},
and the set of lines in PG(2 2) is

0,1,0)
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(2) The set of points in PG(2,3) is

{(0,0,1),(0,1,1),(0,2,1),(1,0,1),(1,1,1),(1,2,1),
(2,0,1),(2,1,1),(2,2,1),(0,1,0),(1,1,0),(2,1,0),(1,0,0)},

and the set of lines in PG(2,3) is

{[0,0,1],[0,1,1],[0,2,1],[1,0,1],[1,1,1],[1,2,1],
2,0,1],[2,1,1],]2,2,1],[0,1,0],[1,1,0],[2,1,0],[1,0,0]}.

Thelinex+y+2z=0is
[17 L, 1] = {(07 2, 1)7 (17 L, 1)7 (2> 0, 1)a (27 1, O)}

We note that PG(2,3) has 13 points and 13 lines and each line
has 4 points in PG(2,3).
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The following hold in PG(2,q).

Points and lines in PG(2, q)
PG(2,q) consists of ¢> + ¢ + 1 points and ¢® + ¢ + 1 lines.
Every line contains ¢ + 1 points.

Two distinct lines meet at a point.

© e ee

There are ¢ + 1 lines passing through a point in PG(2,q).
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Consider quadrics in PG(2,q)

F = ax® + by? + c2® + day + eyz + faz,
where a,b,c,d e, f € F,.

Define v(F') as the zero set of F' in PG(2,q), i.e.,
v(F) := {(w0, 71, 22) € PG(2,q) | F(xo, 71, 72) = 0}.

A conic means a nonsingular quadric.

Any conic has g + 1 (rational) points in PG(2, ¢) with no three
collinear.

A zero set of a singular quadric is a repeated line or a pair of
distince lines or a point.
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Arcs

An (n,r)q-arc

An (n,r)q-arc is a set K of n points of PG(2,q) such that some r
but no 7 + 1 of them, are collinear, i.e., [ N ¢| < r for any line ¢
and | N{| = r for some line £ in PG(2,q).

For an (n,r)q-arc IC, the line £ is called i-line if [¢ N K| = 1.
Define a; as the number of i-lines to IC, i.e.,

a; :=#{||[{NK|=1i}.

Note that a; = 0 for i > r + 1.

The (7 + 1)-tuple (ag, a1, ...,a,) is called the spectrum of the arc
K.
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Example 2.
Let C be a conic in PG(2,q) with the equation y? = 2.

(1) The conic C is a (¢ + 1,2)4-arc in PG(2,q).
We note that the conic

C={({t*t,1)|teF,}U{(1,0,0)}.

Thus |C| = ¢+ 1 and for any line ¢, we have |[CN¢| =0 or 1 or 2.
Thus Cis a (¢ + 1,2)4-arc.
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(2) For a conic C, we have its spectrum as

—1
aOZ(q2)q7 al:q+17 az =

(¢g+1)q
R

Since the tangent lines of C is 1-line, we have a; = q + 1.
And each 2-line contains exactly two points of C.

Thus we have
4y — <q+1> _(g+1)q

2 2
and hence
aw=q¢+q+1— (a1 +a) = (q—21)q.
Hence the spectrum is
Clo:(q;l)q, ap =q+1, 612:(6]4_21)61-
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The value of m,(2,q)

Let m,(2,q) denote the largest n for which there exists an
(n,r)q-arc for given r and g¢.

We call (m,(2,q),r)q -arc the largest arc for given r and q.

An interesting problem in finite geometry is to determine the exact
values of m,(2,q). Obviously, we have the bound for m,(2, q);

mr(27q) < (T - 1)(] +r
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Linear codes

For two vectors x = (x1,x2,...,2,) and y = (y1,Y2,. -, Yn) in
[y, the Hamming distance between x and y, denoted by d(x,y) is
the number of positions in which they differ.

An [n, k, d], linear code C' is a k-dimensional linear subspace of Fy
over F, with minimum distance d, where

d=min{d(x,y) | x,y € C,x #y}
= min{w(x) | x € C,x # 0}.

Here the weight w(x) of x is the number of nonzero positions in x.
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A good code will have small n (for fast transmission of messages),
large k (for a wide variety of messages) and large d ( to correct
many errors).

Optimal linear codes problems

Optimize one of the parameters n, k, d for given values of the other
two for a given field IF,.
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Optimal linear code problems

Optimal linear codes problems by Hill
© Find B(n,d), the largest number ¢* of codewords for which
there exists an [n, k,d], code.

@ Find d,(n, k), the largest minimum distance d for which there
exists an [n, k, d], code.

@ Find ny(k,d), the smallest length n of codewords for which
there exists an [n, k, d]4 code.

A code which achieves one of the above values is called optimal,
that is, we call dimension optimal, distance optimal and length
optimal, respectively.
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We note that the following;

A code is length optimal = distance optimal,
= dimension optimal.

Example 1.

Let C; be a [7,2,4]2 linear code with a generator matrix

Then C is a distance optimal because there is no [7, 2, 5]3 code.
But 1 is not a length optimal and a dimension optimal because
there is a [6,2, 4]2 code and a [7,3,4]2 code, respectively.
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Griesmer bound

Griesmer bound

For an [n, k, d], linear code, we have
d d d
n > gq¢(k,d) :=d+ {q—‘ + ’VQZ—‘ + o+ L,ﬂl“ .

A linear code for which equality holds is called a Griesmer code.

We note that the Griesmer bound is an important lower bound of
ng(k,d), that is,
nq(ka d) 2 gq(ka d)

Every Griesmer code is a length optimal.
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Linear codes and arcs

Let C be an [n, 3,d], code with a generator matrix G.
Consider multi-set S whose elements are columns of G.
Then S can be regarded as a multi-set in PG(2,q).

Thus we have the following;
Theorem
An [n, 3, d], linear code gives an (n,n — d)q4-arc in PG(2,q).

Equivalently, an (n,r),-arc gives an [n,3,n — r], linear code.
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Recall m,(2, q) denotes the largest arc for given r and ¢, and
my(2,q) < (r—1)g+r.

Theorem.

For (r—2)g+r < my(2,q) < (r—1)g+r, the largest (m,(2,q),7)q-
arc corresponds to a Griesmer code(length optimal code).
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We can easily see the following;

@ For r =1, the value m;(2,¢q) = 1 and the arc is a singleton
set.

@ For r = g, the value my(2, q) = ¢* and the arc is the
complement of a line ¢y, i.e., PG(2,q) \ 4.

© For r = g+ 1, the value my41(2,q9) = ¢ + ¢+ 1 and the arc
is the projective plane PG(2,q).

A few values of m,(2,q), (2 <r < q—1) are known for general q.
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Known results on m,(2, q)

Theorem. Bose (1947): On the values of mg(2, q)

We have
q+1, ¢ odd,

q+2, q even.

m2(27 Q) = {

Theorem. Barlotti (1965) and Ball(1996)

For ¢ odd prime, we have

1 3
mr(QaQ):(r_l)Q‘i‘l for T:% or T:%,

Theorem. Denniston (1969)

For ¢ even, we have

mp(2,q) = (r—1)g+r for r=2°<gq.
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The values of m,(2,q)

r/lg[3]4]5]7[8]9] 11 | 13 16 17

2 [4]6] 6 81010 12 14 18 18

3 9| 11|15 |15 | 17 21 23 28 28-33
4 16 | 22 | 28 | 28 32 38-40 52 48-52
5 29 | 33 | 37 | 43-45 49-53 65 61-69
6 36 | 42 | 48 56 64-66 78-82 79-86
7 49 | 55 67 79 93-97 | 95-103
8 65 78 92 120 114-120
9 89-90 105 129-130 137

10 100-102 | 118-119 | 142-148 154

11 132-133 | 159-164 | 166-171
12 145-147 | 180-181 | 183-189
13 195-199 | 205-207
14 210-214 | 221-225
15 231 239-243
16 256-261

From S. Ball, http://www-ma4.upc.es/ simeon/codebounds.html
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Problems

Let r be an integer with 2 <r <¢g—1.

@ Find m,(2,q), the maximum value of n for which an
(n,r)-arc exists in PG(2, q).
Equivalently, find length optimal codes meeting the Griesmer
codes.

@ Classify (n,r)-arcs in PG(2,q) for n =m,(2,q) up to
projective equivalence.
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Consider PG(2, q) as follows;
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A partition of PG(2,q)

For odd prime ¢, we denote by QR the set of quadratic residues
mod ¢ and by NQR the set of quadratic nonresidues mod gq.

We consider a conic with the equation az? + by? + cz? + zy for
(a,b,c) € PG(2,q), denoted by f(4p.)-
Let 7 := {flape) | (a,0,¢) € PG(2,q)}.

Lemma 1

For odd prime ¢, the conic 42y — 2? and a line [u,v,w] has no
common point in PG(2,q) if w? —uv € NQR.

We express the line [u, v, w] as follows;

[u,v,w] :=={(a,b,1) € PG(2,q) | au+bv+w =0} U{(—v,u,0)}.
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For two points (a,b,1), (a’,t',1) € [u, v, w], consider two conics
Cr:=ax? +by? + 22 + 2y and Cy := a'z? + b'y? + 22 + xy.
We have the following;

Lemma 2
Two conics C'y and Cy in F which is given above are disjoint if
uv € NQR.

Next theorem shows that projective plane can be partitioned into
disjoint conics and a point.
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Theorem 3

For odd prime ¢, the projective plane PG(2, q) consists of ¢ disjoint
conics and a point.

Proof) Choose ¢ conics in F such that (a, b, c) € [u,v,w] and
(a,b,c) # (—v,u,0).

Here u, v and w satisfies that
wv € NQR and w? — uwv € NQR.

We note that such a line [u, v, w] exists.
And the point (0,0,1) is outside of the conics in F. Thus we have

PG (2 Q) - { O 0, 1 }UU (a,b,e)€lu,v,w\{(— vuO)}f(a’b’C).
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Thecase g =7

Consider conics in F with the equation
fabe) = ax® +by? + c2* + ay,

and a line [3,1,1]. Then the line [3,1,1] satisfies

w=3eNQRandw? —uww=1-3=-2=5¢€ NQR.

Choose 7 points (a, b, c)

ontheline [3,1,1], (a,b,c) # (—1,3,0) = (2,1,0), where [3,1,1] =
{(2,0,1),(0,6,1),(5,5,1), (1,3,1)(6,2,1), (4,1,1), (3,4, 1), (2,1,0)}.
Then the union of 7 conics and a point {(0,0, 1)} is the whole

plane PG(2,7).
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Theorem 10

Theorem 4
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Conics with one common point

We consider the conics in F with f(4 ), where (a,b,c) is on the
line [0,1,0] = {(a,0,1) | a € F;} U{(1,0,0)}.

Then the intersection of f(,4 ), (a,b,¢) € [0,1,0] is the point
(0,1,0).

Next theorem gives another geometrical configuration of PG(2,q).
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Theorem 4

For odd prime ¢, the projective plane PG(2,q) consists of g conics
with a common point P and common tangent line at P.

Proof) Consider the line [0,1,0] = {(a,0,1) | a € F,}.

Choose ¢ conics f(q,0,1) With a € Fy,a # 1.

Then the intersection of ¢ conics f(,0,1), a # 1 is the point
(0,1,0).

Note that the common tangent line of g conics f(,0,1) is the line
[1,0,0]. Then

PG(2a Q) = [17070] U UaEFq a;élf(a,O,l)'
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For a € F, \ {0}, we have
#{aecF,|1—ae NQR, a#0}=-—01)

and

#{acF,|1—aec NQRUIO}, a#@}:%.

Using this, we have the following;



Introduction Results
000000000000000000000 0000000008000000000000000

Theorem 5

(1) The union of f, o 1) satisfying 1—a € NQR is (@—H, %)q
maximal arc with the spectrum

ap = ¢, al:]_, ag:u’ CL@:M'
2 2 3 2

(2 ) The union of faO 1) satisfying 1 —a € NQRU {0} is ( q+1) 4

1,1 ) maximal arc with the spectrum
ap =0, a1 =q+1, CLq+1:(q2)q7 a+3:(fl+2)q.
2
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Remark

The maximal arcs in Theorem 5 is exactly same arcs with one 's
of Barlotti (1965) and Ball(1996). That is, for a given conic C,
ift = ‘%1, the arcs is the union of a point of C and its internal

set Z(C) and t = %1, the arcs is the union of the conic C and its
internal set Z(C).

v

For ¢ =7, we have
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Thecase g =7

In PG(2,7), consider two conics with two common points (0, 1, 0)
and (1,0,0) as follows;

C, =22 4+uxy, Ch:=62>+zy.

Then the union of C, C3 and the point {(0,0, 1)} is the largest
(15, 3)7-arc with spectrum ag = 12, a3 =0, ay =15, ag = 30.

0.1.0)
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The case ¢ =13

In PG(2,13), consider three conics with two common points
(0,1,0) and (1,0,0) as follows;

Cy = 422 +xy, Co:= 522 +xy C5:= 1222 + xy.

Then the union of C1,C5 and C3 is a (38,4)13 maximal arc.
(0.1.0)
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The case ¢ =8

When ¢ is even, we consider only ¢ = 8.
It is known that the largest (28, 4)g-arc exists uniquely upto
projective equivalence and it's spectrum is ap = 10 and a4 = 63.

We represent that (28, 4)g-arc as several ways.
Let o be a primitive element of Fg with o + a+ 1 = 0.
Here we express the arc with conics.
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(1) The (28,4)s-arc is expressed as the union of three disjoint
conics with common nucleus.
Let C; (i = 1,2, 3) be a conic defined by the equation

Ci:a® +y* + 22 +ay =0,
where {1, A2, A3} = {1, ,a®}. Then the point (0,0,1) is the
nucleus of C; (i =1,2,3). The set C; UCy U C3U{(0,0,1)}
forms the (28, 4)g-arc.

000
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(2) The (28,4)s-arc is expressed using four conics passing through
two points.
Let C; (i =1,...,4) be a conic defined by the equation

Ci: wiz* +zy =0,

where {p1, i, i3, a} = {1,03, a5, a®}.

Then the point (0,0, 1) is the nucleus of C; (i =1,...,4).
For i # j, C; N C; = {(1,0,0), (0,1,0)}.

The set U, C; \ {(1,0,0),(0,1,0)} is a (28,4)g-arc.

(1,0,0) (0,1,0)
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(3) For a conic C'in PG(2,8), the conic C has the spectrum

ag = 28, a] = 9, as = 36.

Then the number of 0-lines is 28.

Those lines forms a dual (28,4)g-arc, i.e., the set

{(a,b,c) € PG(2,8) | [a,b,c] is a 0-line of C'} is the (28,4)g-arc.
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Zero set of a polynomial

Theorem 6. (Homma and Kim, 2018)

Let k£ be an integer with 1 < k < n, and PG(k — 1,q) the linear
subspace defined by xy = 2441 = --- = x, = 0. Then the ideal of
PG(n,q)\ PG(k —1,q) in Fy[zo,...,zy] is generated by

{xng—xix?|0§i<j§n}
n

U{zs [J@f =227 [s=0,1,... .k —1}.
i=k
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Corollary 7.

The ideal of PG(n,q)\{(1,0,...,0)} in Fy[zo, ..., x,] is generated
by {zlz; — 331-;1:;]- |0<i<j<n}U{x H?Zl(:vq_l — xg_l)}.

)

Corollary 8.

Let Py € PG(n,q). Then there is a homogeneous polynomial F'
of degree d in Fy[zo,...,zy] such that the hypersurface H defined
by F' = 0 satisfies H(F;) = PG(n,q) \ {P} if and only if d >
(g—1)n+1.

v

Corollary 9.

Let Py € PG(2,q). Then there is a homogeneous polynomial F' of
degree d in Fy[zg, 21, z2] such that the curve H defined by F' =0
satisfies H(F,) = PG(2,q) \ {Po} if and only if d > 2¢ — 1.

4
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Another partition of PG(2, q) with conics

Next theorem gives another partition of PG(2, q) with conics.

For odd g, the following holds.
Theorem 10.

Let P be a point in PG(2,q) and let ¢; (i = 0,...,q) be ¢+ 1
lines passing through P. Then there exists disjoint ¢ — 1 conics
C1,...,Cq4-1, a line £’ and satisfying the following conditions;

PG(2,q) = U C; Ul U {P}.

and
U, 10 cu,oe and UI” §+1 Ci cuq+q+1e

by renumbering the lines ¢;.
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Cz

— [(q-1)r2

)
d

[ (g+1)/2

Cia+1)/2
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—1

Let H be the set (ULCZ) U (Uq+;+1€ yu/e.

Then H is the complement of the con|c C1, and of degree

1
-3+ 123

5 2( —1).

We obtained a polynomial H whose zero set is the complement of
the conic 1.

Now we prove that the deg H is the minimum of such polynomials
whose zero set is the complement of Cj.
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Theorem 11.
We have

min{deg f | v(f) = PGO(2,4)\ C1} = o(g 1),

Proof. Suppose that there exists a polynomial f of degree

< 3(qg—1) — 1 such that v(f) = PG(2,q) \ C1.

Let {Q()v Q17 R Qq} = Cl-

Consider qgl lines Q1Q2,...,Qq—2Q4—1 and any line £ containing
Q4 but not QQp. Then the product of f and these %1 lines is the
polynomial of degree < 2q — 2, whose zero set is exactly

PG(2,q) \ {Qo}. It contradicts the Corollalry 9. O
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Thank you for your attention!!
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