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PP and CPP

Fq is the finite field with q elements where q is a prime power.

A polynomial f (x) over Fq is called a permutation polynomial (PP) if
the induced polynomial function f : c 7→ f (c) from Fq to itself
permutes Fq.

A polynomial f (x) over Fq is called a complete permutation
polynomial (CPP) if both f (x) and f (x) + x are permutations of Fq.



Example for PP and CPP
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f (x) = ωx f (x) + x = ω2x

f (x) is a linear CPP of F22 .



A brief history of CPPs

CPPs of groups were introduced by Mann [Ann. Math. Stat. 1942];

A detailed study of CPPs of finite fields was initially carried out by
Niederreiter and Robinson [J. Aust. Math. Soc. A, 1982];

The reduced degree of complete mapping of finite fields with even
characteristic was studied by Wan [J. Aust. Math. Soc. A, 1986];



A brief history of CPPs

Mullen and Niederreiter proved that a Dickson polynomial can be a
complete mapping only in some special cases [Cana. Math. Bull.
1987];

CPPs over F16 were given in [Yuan-Tong-Zhang, LNCS, 2007];

Monomial CPPs of type ax
q−1
k

+1 were investigated in [Laigle-Chapuy,
FFA, 2007; Sarkar-Bhattacharya-Cesmelioglu, LNCS, 2012];



A brief history of CPPs

By using the technique of polar coordinate representation, monomial
CPPs and trinomial CPPs of F2n were given in [Tu-Zeng-Hu, FFA,
2014];

The constructions and proof methods of the above paper triggered a
series of investigations on sparse CPPs [Wu-Li-Helleseth-Zhang, FFA,
2014; Xu-Cao, FFA, 2015; Wu-Lin, Discret. Appl. Math. 2015;
Bartolia-Giulietti-Zinib, FFA, 2016· · · ];

CPPs were generated by recursive methods in [Muratovic-Pasalic,
FFA, 2014; Zha-Hu-Cao, FFA, 2015]
· · · · · ·



The applications of CPPs in cryptography

CPPs have been widely used in cryptography. For examples:

in the design of nonlinear dynamic substitution device [Mittenthal,
Adv.Appl.Math. 1995];

in the design of Hash functions [Schnorr-Vaudenay, Advances in
Cryptology-Eurocrypt’94, 1995; Vaudenay, LNCS, 1994];

in the Lay-Massey scheme [Vaudenay, Advances in Cryptology-
Asiacrypt’99, 1999];

in block ciphers SMS4
[http://www.oscca.gov.cn/UpFile/200621016423197990.pdf];

in stream ciphers Loiss [Feng-Feng-Zhang, et al, LNCS, 2011].



Algebraic degree

Definition 1

Any function from Fpn to Fpn can be uniquely expressed by a univariate
polynomial

F (x) =

pn−1∑
i=0

bix
i ∈ Fpn [x ]/(xpn − x)

and the algebraic degree of F is defined as

deg(F ) = max
0≤i<pn

{wtp(i) : bi 6= 0},

where wtp(s) is the p-weight of an integer s, 0 ≤ s < pn, defined as
wtp(s) =

∑n−1
i=0 si by its p-ary expansion s =

∑n−1
i=0 sip

i .

For cryptographic applications, it is usually desirable that the PPs in use
have high algebraic degree.



The upper bound of algebraic degree of CPPs

Any CPP of Fq with q > 3 has reduced degree at most q − 3
[Niederreiter-Robinson, J. Aust. Math. Soc. A, 1982; Wan, J. Aust.
Math. Soc. A, 1986].

Any CPP of Fpkn with pkn > 3 has maximum algebraic degree
kn(p − 1)− 1.



The algebraic degree of some known CPPs

CPPs Finite field Algebraic degree Literature

Monomial CPPs F22n deg ≤ n − 1 [Sarkar et al., LNCS, 2012]

Sparse CPPs F22n deg ≤ 3 [Tu-Zeng-Hu, FFA, 2014]

Monomial CPPs F2kn deg ≤ k [Wu-Li-Helleseth-Zhang, FFA, 2014]

Sparse CPPs F22n deg ≤ n + 1 [Wu-Lin, Discret. Appl. Math. 2015]

Sparse CPPs F32n deg ≤ 2n + 1 [Xu-Cao, FFA, 2015]

Monomial CPPs Fpkn deg ≤ 4 [Bassalygo-Zinoviev, FFA, 2015]

Sparse CPPs Fpkn deg ≤ n + 1 [Bartolia-Giulietti-Zini, FFA, 2016]

Recursive CPPs Fpkn deg ≤ kn [Zha-Hu-Cao, FFA, 2015]

Table: The algebraic degree of some known CPPs



Motivation

A limited number 99K known constructions of CPPs.

The cryptographic properties of CPPs 99K not taken into
consideration.

None of the known (infinite) classes of CPPs 99K sufficiently high
algebraic degree.



Questions

New approaches 99K CPPs?

Upper bound on the algebraic degree 99K CPPs?

CPPs99K nearly optimal algebraic degree?
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The applications of Feistel and MISTY structures

The Feistel and MISTY structures have been used in the design of many
block ciphers. For examples:

in DES algorithm;

in ZUC algorithm;

in Lightweight S-Boxes;
· · · · · ·



1-round Feistel and MISTY structures
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Ωp = (x2, p(x2) + x1) Φp = (x2, p(x1)− x2) Ψp = (p(x2), p(x2) + x1)
1-round Feistel structure 1-round L- MISTY structure 1-round R-MISTY structure

Figure: Balanced Feistel and MISTY structure without round key



CPPs from one-round Feistel and MISTY structions

Lemma 1

Let p(z) be a polynomial from Fq to itself. Let Ωp, Φp and Ψp be three
mappings from F2

q to itself defined by

Ωp(x1, x2) = (x2, p(x2) + x1),
Φp(x1, x2) = (x2, p(x1)− x2),
Ψp(x1, x2) = (p(x2), p(x2) + x1),

(1)

where x = (x1, x2) ∈ F2
q. Then the mappings Ωp, Φp and Ψp are CPPs of

F2
q when p(z) permutes Fq.



Two-round Feistel and MISTY structures

x1 x2

p1

x1 + p1(x2)x2

p2

x1 + p1(x2) + p2(x2) = y2x1 + p1(x2) = y1

Φp2 ◦ Ωp1 =
(

x1 + p1(x2), x1 + p1(x2) + p2(x2)
)

Figure: Φp2 ◦ Ωp1 from two-round structure



Two-round constructions

Proposition 1

Let p1(z), p2(z) be two permutations of F2n . Then each mapping in
S = {Ψp2◦Ωp1 ,Ωp2◦Φp1 ,Ψp2◦Φp1 ,Ωp2◦Ωp1 ,Φp2◦Ωp1 ,Ωp2◦Ψp1 ,Φp2◦Ψp1}
is a CPP of F2

2n .

Φp2 ◦ Φp1 is a CPP of F2
2n if p1(z) + p2(p1(z) + z + γ) permutes F2n

for any γ ∈ F2n where p1(z) and p2(z) are two permutations of F2n .

Ψp2 ◦Ψp1 is a CPP of F2
2n if p1(z) + z + p2(z + γ) permutes F2n for

any γ ∈ F2n where p1(z) and p2(z) are two permutations of F2n .



Three-round Feistel and MISTY structures

x1 x2

p1

x1 + p1(x2)x2

p2

x1 + p1(x2) + p2(x2)x1 + p1(x2)
p3

y2y1

(y1, y2) =
(

p2(x2) + p1(x2) + x1, p3(p2(x2) + p1(x2) + x1) + p1(x2) + x1
)

(y1, y2) = Ωp3 ◦ Φp2 ◦ Ωp1(x1, x2)



Three-round constructions

Theorem 1

Let p2(z) and p3(z) + z be two permutations of F2n . Let p1(z) be a
polynomial over F2n such that p1(z) + p2(z) is a permutation. Then
Ωp3 ◦ Φp2 ◦ Ωp1 is a CPP of F2

2n .



Useful results about p1(z) + p2(z)

Proposition 2

Let m and k be two odd positive integers with gcd(k(k − 1),m) = 1 and

let n = 2m. Suppose p1(z) = uz2k−1 for a non-cubic element u in the unit

circle U = {λ ∈ F2n : λ2
m+1 = 1} and p2(z) = z(2k−1−1)(2m−1)+2k−1. Then

p1(z), p2(z) and p1(z) + p2(z) are all permutation polynomials over F2n .

Proposition 3

Let g1 and g2 be polynomials over Fq with q being a power of 2. Let Φg1

and Ψg2 be defined as in (1). If g1(z) and g2(z) are CPPs of Fq, then Φg1 ,
Ψg2 and Φg1 + Ψg2 are PPs of F2

q.



Generalized construction

Theorem 2

Let p1(z), p2(z), p3(z) be polynomials over Fpn for any prime p. Let F be
a function from F2

pn to itself given by

F (x) = (p1(−x2)−x1−p3( p2( p1(−x2)−x1)−x2), p2( p1(−x2)−x1)−x2)

where x = (x1, x2) ∈ F2
pn .

The polynomial F (x) is a CPP of F2
pn if the following two conditions are

satisfied:
(1) p1(z)− p3(z + γ) is a permutation of Fpn for any γ ∈ Fpn ;
(2) p2(z) is a permutation of Fpn .

The function F (x) is closely related to the mapping Ωp in Definition 2.



Some trivial examples of p1(z) and p3(z)

Let p1(z) = p(z) +
∑n−1

i=0 aiz
pi in Fpn [z ] with a PP p(z) of Fpn .

Let p3(z) =
∑n−1

i=0 aiz
pi .

p1(z)− p3(z + γ) = p(z)−
∑n−1

i=0 aiγ
pi is a PP of Fpn for any

γ ∈ Fpn .



Non-trivial examples of p1(z) and p3(z) for p = 2

Proposition 4

Let n = 2m with an odd positive integer m and d = 2k + 1 with an even
positive integer k. Let ω be a primitive root of F22 , p1(z) = zd and
p3(z) = ωzd . Then p1(z) + p3(z + γ) for any γ ∈ F2n is a permutation of
F2n .



Non-trivial examples of p1(z) and p3(z) for p = 3

Proposition 5

For a positive odd integer n with n ≥ 3, if d ≡ −1(mod 3) and
gcd(d , 32n − 1) = 1, then

(z + 1)d + (z − 1)d = 2Dd(z , 1)

is a permutation of F3n , where Dd(z , 1) is the Dickson polynomial.

Corollary

Let n and k be two positive odd integers with k ≤ n − 2. Let d = 3k+1+1
2

and p1(z) = zd , p3(z) = −zd be polynomials over F3n . Then
p1(z)− p3(z + γ) is a permutation of F3n for any γ in F3n .
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The upper bounds on algebraic degree

Let n be any positive integer.

Any CPP of Fp2n 99Kdeg ≤ 2n(p − 1)− 1.

CPPs Finite field Upper bound

Any one-round CPPs F2
2n n − 1

Any two-round CPPs F2
2n 2n − 3

12 classes of three-round CPPs F2
2n 2n − 3

4 classes of three-round CPPs F2
2n 2n − 2

A class of general CPPs F2
pn 2n(p − 1) − 3

Table: The upper bounds of algebraic degree of the proposed CPPs

The upper bounds are achievable by carefully choosing the
polynomials pi (z), i = 1, 2, 3.
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Conclusion

Feistel and MISTY structures 99K CPPs;

Upper bounds on the algebraic degree 99K CPPs;

CPPs99K nearly optimal algebraic degree.

Xiaofang Xu, Chunlei Li, Xiangyong Zeng, Tor Helleseth,
Constructions of complete permutation polynomials, Designs, Codes
and Cryptography, 2018, DOI 10.1007/s10623-018-0480-7.



Open problems

Open Problem 1

Find polynomials p1(z), p2(z) in Fpn [z ] with other forms such that
p1(z)− p2(z + γ) is a permutation of Fpn for any γ ∈ Fpn .

Open Problem 2

For a PP p(z) in Fpn [z ], if p(z)− βp(z + γ) permutes Fpn for any γ ∈ Fpn

with β ∈ Fpn \ {0, 1}, do there exist some relationship between p(z) and
perfect nonlinear functions?

Open problem 3

Do there exist CPPs with maximum possible algebraic degree constructed
from the Feistel structure and/or MISTY structure?



Thanks

Thanks for your attention!


