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Distributed Storage System: Replication vs. MDS

In an n = 6, k = 2 distributed storage system,
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• MDS codes provide optimal data reliability for given storage
overhead.



Efficiency of Node Repair

Repair bandwidth 
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Metrics of efficiency:

• Repair bandwidth: number of bits transferred (regenerating codes)

• Disk-I/O: number of bits read from memory (optimal access repair)

• Repair locality: number of nodes accessed (cloud storage)
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Locally Repairable Code

Let C be an [n, k]q linear code, generator matrix G = (g1, · · · , gn).

Definition

The ith coordinate of C is said to have repair locality r if gi is an
Fq-linear combination of at most r other columns of G .

• Information locality:
the k information coordinates have locality r .

• All symbol locality:
all coordinates have locality r .

Remark

• Repair locality for nonlinear codes can be defined similarly.

• Suppose d > 1, it always has r ≤ k.



Bound on the Parameters of LRC

Theorem 1

For an [n, k , d ] linear code with information locality r , it has

d ≤ n − k + 1− (

⌈
k

r

⌉
− 1) .

Remark

• Codes with all symbol locality r also satisfy the above bound.

• The bound is tight for codes with information locality r .
(pyramid code construction)

• When (r + 1) - n and r | k, the inequality holds strictly for
codes with all symbol locality.

1. P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, On the Locality of
Codeword Symbols, IEEE Transactions on Information Theory, 2012.



The Bound Can be Attained When ...

• (r + 1) | n, explicit constructions were given over
• field of size exponential in n. (see [1-2])
• field of size comparable to n. (see [3])

• n mod (r + 1) > k mod r > 0,
• field of size exponential in n. (see [1])

• w ≥ r + 1−m and r − v ≥ u

• w + 1 ≥ 2(r + 1−m) and 2(r − v) ≥ u
• where w = b n

r+1c, u = b kr c, m = n mod (r + 1) and v = k
mod r . Constructions were given over field of size exponential
in n. See [4].

1. N. Silberstein, A. S. Rawat, O. O. Koyluoglu, and S. Vishwanath, Optimal locally repairable codes via
rank-metric codes, ISIT 2013.

2. I. Tamo, D. S. Papailiopoulos, and A. G. Dimakis, Optimal locally repairable codes and connections to
matroid theory, ISIT 2013.

3. I. Tamo and A. Barg, A family of optimal locally recoverable codes, IEEE Trans. Inf. Theory, 2014.

4. W. Song, S. H. Dau, C. Yuen, and T. J. Li, Optimal locally repairable linear codes, IEEE J. Sel. Areas
Commun., 2014.



The Bound Can Not be Attained When ...

• (r + 1) - n and r | k , see [1]

• m < v + 1 and u ≥ 2(r − v) + 1, see [2]

• For (r + 1) - n, the construction in [3] can be used to get an
LRC with d ≥ n − k − dkr e+ 1 which is at most one less than
the upper bound.

1. P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, On the Locality of
Codeword Symbols, IEEE Transactions on Information Theory, 2012.

2. W. Song, S. H. Dau, C. Yuen, and T. J. Li, Optimal locally repairable linear
codes, IEEE J. Sel. Areas Commun., 2014.

3. I. Tamo and A. Barg, A family of optimal locally recoverable codes, IEEE Trans.
Inf. Theory, 2014.



Some Improvement to the Bound

• In [1], an improved upper bound on the minimum distance
was derived, i.e. d ≤ n − k + 1− ` where ` is computed from
a recursively defined sequence.

• In [2], a further improved, explicit bound was obtained for any

[n, k , d ] LRC with n1 > n2, where n1 =
⌈

n
r+1

⌉
and

n2 = n1(r + 1)− n.

However, all bounds introduced so far are field-independent!

• even if the bound can be met with equality, it doesn’t mean this can
happen in any field!

• the field size has an effect on the code parameters.

1. N. Prakash, V. Lalitha, and P. V. Kumar, Codes with locality for two erasures,
ISIT 2014.

2. Anyu Wang, Zhifang Zhang, An integer programming based bound for locally
repairable codes. IEEE Transactions on Information Theory 61(10), 5280–5294,
2015.
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Field-Dependent Bounds for LRC

• The C-M bound [1]: k ≤ Mint∈Z+

[
tr + k

(q)
opt(n − (r + 1)t, d)

]
,

where k
(q)
opt(n, d) is the maximum dimension of a linear code of

length n and distance d over Fq (only known from code tables
or approximation).

• Combinatorial and LP bound for (r , δ)-LRCs [2]:
• Combinatorial bound: degenerate to the Singleton-like bound

when δ = 2.
• LP bound: need to solve a linear programming problem.

• Other bounds apply to very specifical cases.

1. V. Cadambe and A. Mazumdar. Bounds on the size of locally recoverable codes.
IEEE transactions on information theory, 61(11):57875794, 2015.

2. A. Agarwal, A. Barg, S. Hu, A. Mazumdar and I. Tamo, ”Combinatorial
Alphabet-Dependent Bounds for Locally Recoverable Codes,” in IEEE
Transactions on Information Theory, vol. 64, no. 5, pp. 3481-3492, May 2018.



Our Goal

To derive new bounds for the parameters of LRC which are

• field-dependent;

• explicit;

• suitable for a wider range of parameters;

• tighter than the C-M bound or the LP bound.
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The L-Space of Linear LRCs

Let C be an [n, k , d ] linear LRC over Fq with locality r :

L-cover: H
A set of parity checks H ⊆ C⊥ is called an L-cover of C if

• Locality: wt(h) ≤ r + 1 for all h ∈ H;

• Minimum Cover:
⋃

h∈H supp(h) = [n], and
⋃

h∈H′ supp(h) 6= [n]

for all H′ ( H.

L-space: V

The dual space of an L-cover is called an L-space of C, denoted by
V, i.e., V = {v ∈ Fn

q |< v,h >= 0, ∀h ∈ H}.

• Actually, V is also an LRC containing C as a sub-code.



Sphere-Packing Problem in the L-Space

• ∀ c ∈ C, draw a sphere of radius bd−1
2 c in V centered at c.

• Obviously, these spheres are pairwise disjoint.

The L-Space V

Points in C

≥ d
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Sphere-Packing Problem in the L-Space

• Denote BV(
⌊
d−1

2

⌋
) =

∣∣{v ∈ V : wt(v) ≤
⌊
d−1

2

⌋
}
∣∣

• It has |C| · BV(
⌊
d−1

2

⌋
) ≤ |V|

The L-Space V

:Points in C

bd−1
2
c



A Connection Between k , d and the L-Space V

Observe that:

• |C| · BV(
⌊
d−1

2

⌋
) ≤ |V|;

• logq |C| = k, logq |V| = dim(V).

Lemma:

k ≤ dim(V)− logq
(
BV(

⌊d − 1

2

⌋
)
)
, (1)

• Explicit bound can be derived from (1) if the weight
distribution of V is known;

• Can be easily applied to LRCs with disjoint repair groups.



Binary LRCs with Disjoint Repair Groups

Disjoint Repair Groups

∃ local parity checks h1,h2, . . . ,h` ∈ C⊥, where ` = n
r+1 , satisfying

• supp(hi ) ∩ supp(hi ′) = ∅ for 1 ≤ i 6= i ′ ≤ `.
• wt(hi ) = r + 1;

• H = {h1,h2, . . . ,h`} is an L-cover of C;

• spn2(H) has weight enumerator polynomial (x r+1 + y r+1)`

• V = spn2(H)⊥, dim(V) = rn
r+1 , BV(

⌊
d−1

2

⌋
) =?

• by the MacWilliams’ identity:

WV (x , y) =
∑

0≤u≤ n
2

Aux
n−2uy2u ,

where Au =
∑

i1+···+il=u

∏`
j=1

(r+1
2ij

)
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Explicit Bound Can Be Derived

Since BV(
⌊
d−1

2

⌋
) = A0 + · · ·+ Ab d−1

4 c
=
∑

0≤i1+···+i`≤b d−1
4 c
∏`

j=1

(
r+1
2ij

)
,

Bound A:

k ≤ rn

r + 1
− log2

( ∑
0≤i1+···+i`≤b d−1

4 c

∏̀
j=1

(
r + 1

2ij

))
. (2)

• It covers the bounds derived in [Goparaju&Calderbank 2014],
[Zeh&Yaakobi 2015] as special cases for specific forms of n, r .

• Extension to q-ary LRCs:

k ≤ rn

r + 1
− logq

( ∑
0≤i1+···+i`≤b d−1

2 c

∏̀
j=1

β(r , ij)
)
,

where β(r , i) = 1
q ((q − 1)i + (−1)i (q − 1))

(
r+1
i

)
.
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Comparison with the C-M bound and LP bound

The following table lists the upper bounds on k computed
respectively from Bound A, the C-M Bound and the LP Bound:

r 3 4 5 6 7 8 9 10

Bound A 4 7 9 12 14 17 19 22
The C-M bound 5 7 10 13 15 18 21 23
The LP bound 4 6 9 11 14 17 19 22

Table: A comparison for 3 ≤ r ≤ 10, n
r+1 = 3, d = 5

It can be seen that Bound A is:

• a little weaker than the LP bound but tighter than the C-M
bound

• explicitly computable, while neither the C-M bound nor the
LP bound is explicit.
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Applying the Shortening Technique

For an LRC C with unknown structure of local repair groups:

• We want to apply the inequality

k ≤ dim(V)− log2

(
BV(

⌊
d−1

2

⌋
)
)

(2)

• BV(
⌊
d−1

2

⌋
) can not be computed directly!

• Our approach:

The LRC C New LRC C′
Shortening

Disjoint repair groupsUnknown repair groups

Apply inequality (2)

Bounds on
Parameters of C′

Bounds on
Parameters of C

Relationship between
the parameters
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New Upper Bound

Theorem

For any [n, k , d ] binary linear LRC with locality r , it has

k ≤ n − Min
l ,r1,...,r`

[
`+ log2 (Φ`(r1, . . . , r`))

]
, (3)

where Φ`(r1, . . . , r`)=
∑

0≤i1+···+i`≤b
d−1

4
c

∏`
j=1

(rj+1
2ij

)
and the ‘Min’ is subject

to {
n

r+1
≤ ` ≤ 2n

r+2
;

0 ≤ r1, . . . , r` ≤ r ;

r1 + · · ·+ r` = 2n − `(r + 2).

• The bound (3) is based on solving an optimization problem.

• Solving the optimization problem is very difficult in general.

• However, for some special cases the bound (3) can be simplified.
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Explicit Bounds Derived from (3)
Bound B: for d ≥ 5

For any [n, k , d ] binary linear LRC with locality r such that d ≥ 5
and 2 ≤ r ≤ n

2 − 2, it holds

k ≤ rn

r + 1
−min{log2(1 +

rn

2
),

rn

(r + 1)(r + 2)
}.

Bound C: for r = 2

For any [n, k , d ] binary linear LRC with locality r = 2, it has

k ≤ n − Min
n
3≤`≤

n
2 ,`∈Z

[
`+ log2(µ(`))

]
,

where

µ(`) =



∑
0≤i1+i2≤b d−1

4
c

(
6`−2n

i1

)(
2n−5`

i2

)
3i2 , if n

3
≤ ` ≤ 2

5
n;

∑
0≤i≤b d−1

4
c

(
2n−4`

i

)
, if 2

5
n < ` ≤ n

2
.



Comparisons
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Figure: r = 3, d = 5, 10 ≤ n ≤ 60
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Figure: r = 2, d = 8, 60 ≤ n ≤ 110
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Conclusions

• This work dedicates to establish new, field-dependent bounds
for LRCs.

• By using the sphere-packing approach, we derive three explicit
bounds which tend to outperform the C-M bound.

• Some constructions with specific parameters attaining our
new bounds are presented in the paper.

• Is it possible to use sphere-packing more smartly?
• Inner space: an LRC C;
• Outer space: the L-space which is a larger LRC.

• Can we extend other field-dependent bounds in coding theory
to LRCs?

• Plotkin bound, Griesmer bound, ...

• Anyway, it is interesting and meaningful to study the influence
of field size on the parameters of LRCs.



Thanks for your attention!
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