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Self-Dual codes

• Binary self-dual codes & Additive self-dual codes over GF (4)
• Common points

1. Type I, Type II
2. Shadow codes



Upper bounds of minimum distance

Theorem
(Rains) Let C be an [n, n/2, d] self-dual binary code. Then
d ≤ 4[n/24] + 4 if n 6≡ 22 (mod 24). If n ≡ 22 (mod 24), then
d ≤ 4[n/24] + 6, and if equality holds, C can be obtained by
shortening a Type II code of length n+ 2. If 24|n and d = 4[n/24] + 4,
then C is Type II.

Theorem
(Rains) Let C be an (n, 2n, d) additive self-dual code over GF (4). If C
is Type I, then d ≤ 2[n/6] + 1 if n ≡ 0 (mod 6), d ≤ 2[n/6] + 3 if n ≡ 5
(mod 6), and d ≤ 2[n/6] + 2 otherwise. If C is Type II, then
d ≤ 2[n/6] + 2.

A code meeting the bound, i.e., equality holds in the bound, is called
extremal.



Extremal Type II

∃ systematic nonexistence proof

Theorem
(Zhang) Let C be an extremal binary Type II code of length
n = 24m+ 8`. Then the code C do not exist if m ≥ 154 (for ` = 0),
m ≥ 159 (for ` = 1), and m ≥ 164 (for ` = 2).

Theorem
Let C be an extremal Type II additive self-dual code over GF (4) of
length n. Then the code C do not exist if n = 6m (m ≥ 17),
n = 6m+ 2 (m ≥ 20), n = 6m+ 4 (m ≥ 22).

Proof.
The proof is the same as the ones of Type IV Hermitian self-dual
linear codes over GF (4). The same Gleason polynomials.



Near-Extremal Type II

Definition
(Han, Kim) Near-extremal Type II code
• binary case: if d = 4[n/24]

• additive case: if d = 2[n/6]

Theorem
(Han, Kim) There is no near-extremal code with length n for
• binary case: n = 24i(i ≥ 315), 24i+ 8(i ≥ 320), 24i+ 16(i ≥ 325)

• additive case: n = 6i(i ≥ 38), 6i+ 2(i ≥ 41), 6i+ 4(i ≥ 43)



How about Type I ?

Extremal code : No such proof for the nonexistence proof.
Near-extremal code : No definition for the codes.



Type I codes with minimal shadow

Definition
(Bouyuklieva, Willems) Let C be a Type I binary self-dual code of
length n = 24m+ 8`+ 2r with ` = 0, 1, 2 and r = 0, 1, 2, 3. Then C is a
code with minimal shadow if:

1. d(S) = r for r > 0; and
2. d(S) = 4 for r = 0,

where d(S) is the minimum weight of S.

Definition
(Han) Let C be a Type I additive self-dual code over GF (4) of length
n = 6m+ r(0 ≤ r ≤ 5). Then C is a code with minimal shadow if:

1. d(S) = 1 if r > 0; and
2. d(S) = 2 if r = 0,

where d(S) is the minimum weight of S.



Extremal Type I codes with minimal shadow

• binary case: nonexistence proof for some codes
• additive case: nonexistence proof for some codes



Near-extremal Type I codes

Definition
Let C be a [n, n/2, d] Type I binary self-dual code. Then C is a
near-extremal code if:

1. d = 4[n/24] + 2 for n 6≡ 22 (mod 24); and
2. d = 4[n/24] + 4 for n ≡ 22 (mod 24).

Definition
Let C be an (n, 2n, d) Type I additive self-dual code over GF (4). Then
C is a near-extremal code if C is Type I and d = 2[n/6] if n ≡ 0
(mod 6), d = 2[n/6] + 2 if n ≡ 5 (mod 6), and d = 2[n/6] + 1
otherwise.



Near-extremal Type I codes with minimal shadow

• binary case: nonexistence proof for some codes
• additive case: nonexistence proof for some codes
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Extremal Type I binary self-dual codes with
minimal shadow

• GF (2) : Finite Field of order 2

• A linear code : GF (2)-subspace C ⊆ GF (2)n

• Inner Product : for x,y ∈ GF (2)n, x · y = x1y1 + · · ·+ xnyn.

• Dual code : C⊥ = {x ∈ GF (2)n
∣∣x · c = 0, ∀ c ∈ C}

• Self-dual : C = C⊥

• Type II : if the weights of all codewords are divisible by 4

• Type I : otherwise



Extremal Type I binary self-dual codes with
minimal shadow

Theorem
(Rains) Let C be an [n, n/2, d] self-dual binary code. Then
d ≤ 4[n/24] + 4 if n 6≡ 22 (mod 24). If n ≡ 22 (mod 24), then
d ≤ 4[n/24] + 6, and if equality holds, C can be obtained by
shortening a Type II code of length n+ 2. If 24|n and d = 4[n/24] + 4,
then C is Type II.

- A code meeting the bound, i.e., equality holds in the bound, is called
extremal.

- ∃ systematic nonexistence proof

Theorem
(Zhang) Let C be an extremal binary Type II code of length
n = 24m+ 8`. Then the code C do not exist if m ≥ 154 (for ` = 0),
m ≥ 159 (for ` = 1), and m ≥ 164 (for ` = 2).

- Shadow code



Extremal Type I binary self-dual codes with
minimal shadow

Shadow code
• let C(0) be the subset of C consisting of all codewords whose

weights are multiples of 4
• let C(2) = C\C(0)

•

S = S(C) =

{u ∈ GF (2)n : (u, v) = 0 for all v ∈ C(0), (u, v) = 1 for all v ∈ C(2)}.

Lemma
(Conway, Sloane) Let C be a Type I binary self-dual code of length n
and minimum weight d. Let S(y) =

∑n
i=0 biy

i be the weight
enumerator of S(C). Then:

1. b0 = 0

2. bi ≤ 1 for i < d/2



Extremal Type I binary self-dual codes with
minimal shadow

Let C be a Type I binary self-dual code of length n = 24m+ 8`+ 2r
where ` = 0, 1, 2 and r = 0, 1, 2, 3.

WC(x, y) =

[n/8]∑
i=0

ci(x
2 + y2)n/2−4i{x2y2(x2 − y2)2}i.

WS(x, y) =

[n/8]∑
i=0

(−1)i2n/2−6ici(xy)n/2−4i(x4 − y4)2i.

⇒

WC(1, y) =

12m+4`+r∑
j=0

ajy
2j =

3m+`∑
i=0

ci(1+y
2)12m+4`+r−4i{y2(1−y2)2}i.

WS(1, y) =

6m+2`∑
j=0

bjy
4j+r =

3m+`∑
i=0

(−1)ici 212m+4`+r−6iy12m+4`+r−4i(1−y4)2i.



Extremal Type I binary self-dual codes with
minimal shadow

ci =

i∑
j=0

αijaj =

3m+`−i∑
j=0

βijbj .

αi0 = − n
2i

[
coeff. of yi−1 in (1 + y)−(n/2)−1+4i(1− y)−2i

]
βij = (−1)i2−n

2 +6i k − j
i

(
k + i− j − 1

k − i− j

)
,

where k = 3m+ `.



Extremal Type I binary self-dual codes with
minimal shadow

Definition
Let C be a Type I binary self-dual code of length n = 24m+ 8`+ 2r
with ` = 0, 1, 2 and r = 0, 1, 2, 3. Then, C is a code with minimal
shadow if:

1. d(S) = r for r > 0 and
2. d(S) = 4 for r = 0

where d(S) is the minimum weight of S.



Extremal Type I binary self-dual codes with
minimal shadow

Let C be an extremal Type I binary self-dual code with a minimal
shadow of length n.
• For ai, we have a0 = 1, a1 = a2 = · · · = a2m+1 = 0.
• Moreover, if n ≡ 22 (mod 24), then a2m+2 = 0.
• b0 = 1 if (i) r = 1 and m ≥ 0 and (ii) r = 2, 3 and m ≥ 1.
• b0 = 0, b1 = 1 if r = 0 and m ≥ 2.
• If r > 0 then b1 = b2 = · · · = bm−1 = 0.
• If r = 0 then b2 = b3 = · · · = bm−1 = 0.
• Moreover, if n = 24m+ 8l + 2, then bm = 0.



Extremal Type I binary self-dual codes with
minimal shadow

Lemma

1. If n = 24m+ 2 (m ≥ 0), then ci = αi0 for 0 ≤ i ≤ 2m+ 1, ci = βi0 for 2m ≤ i ≤ 3m.

2. If n = 24m+ 4 (m ≥ 1), then ci = αi0 for 0 ≤ i ≤ 2m+ 1, ci = βi0 for
2m+ 1 ≤ i ≤ 3m.

3. If n = 24m+ 6 (m ≥ 1), then ci = αi0 for 0 ≤ i ≤ 2m+ 1, ci = βi0 for
2m+ 1 ≤ i ≤ 3m.

4. If n = 24m+ 8 (m ≥ 2), then ci = αi0 for 0 ≤ i ≤ 2m+ 1, ci = βi1 for
2m+ 2 ≤ i ≤ 3m+ 1.

5. If n = 24m+ 10 (m ≥ 0), then ci = αi0 for 0 ≤ i ≤ 2m+ 1, ci = βi0 for
2m+ 1 ≤ i ≤ 3m+ 1.

6. If n = 24m+ 12 (m ≥ 1), then ci = αi0 for 0 ≤ i ≤ 2m+ 1, ci = βi0 for
2m+ 2 ≤ i ≤ 3m+ 1.

7. If n = 24m+ 14 (m ≥ 1), then ci = αi0 for 0 ≤ i ≤ 2m+ 1, ci = βi0 for
2m+ 2 ≤ i ≤ 3m+ 1.

8. If n = 24m+ 16 (m ≥ 2), then ci = αi0 for 0 ≤ i ≤ 2m+ 1, ci = βi1 for
2m+ 3 ≤ i ≤ 3m+ 2.

9. If n = 24m+ 18 (m ≥ 0), then ci = αi0 for 0 ≤ i ≤ 2m+ 1, ci = βi0 for
2m+ 2 ≤ i ≤ 3m+ 2.

10. If n = 24m+ 20 (m ≥ 1), then ci = αi0 for 0 ≤ i ≤ 2m+ 1, ci = βi0 for
2m+ 3 ≤ i ≤ 3m+ 2.

11. If n = 24m+ 22 (m ≥ 1), then ci = αi0 for 0 ≤ i ≤ 2m+ 2, ci = βi0 for
2m+ 3 ≤ i ≤ 3m+ 2.



Extremal Type I binary self-dual codes with
minimal shadow

Theorem
Let C be an extremal Type I binary self-dual code of length n with minimal
shadow. Then, the weight enumerator of C is unique if
n 6≡ 24m+ 16, 24m+ 20.

Theorem
(Bouyuklieva, Willems) Extremal self-dual codes of lengths
n = 24m+ 2, 24m+ 4, 24m+ 6, 24m+ 10 and 24m+ 22 with minimal
shadow do not exist.

Theorem
(Bouyuklieva, Willems) There are no extremal Type I binary self-dual codes of
length n with minimal shadow if

1. n = 24m+ 8 and m ≥ 53;

2. n = 24m+ 12 and m ≥ 142;

3. n = 24m+ 14 and m ≥ 146;

4. n = 24m+ 16 and m ≥ 164;

5. n = 24m+ 18 and m ≥ 157.



Extremal Type I binary self-dual codes with
minimal shadow

Remark
Currently, n = 24m+ 20 is the unique untouched code length for the
nonexistence or an explicit bound for the length n of an extremal Type
I binary self-dual code with minimal shadow.



Near-extremal Type I binary self-dual codes with
minimal shadow

Definition
Let C be an [n, n/2, d] Type I binary self-dual code. Then, C is a
near-extremal code if:

1. d = 4[n/24] + 2 for n 6≡ 22 (mod 24); and
2. d = 4[n/24] + 4 for n ≡ 22 (mod 24).



Near-extremal Type I binary self-dual codes with
minimal shadow

Let C be a near-extremal Type I binary self-dual code with minimal
shadow.
• a0 = 1, a1 = a2 = · · · = a2m = 0.
• Moreover, if n ≡ 22 (mod 24), then a2m+1 = 0.
• b0 = 1 if (i) r = 1, 2 and m ≥ 1 (ii) r = 3, n 6≡ 22 (mod 24), and
m ≥ 2 (iii) r = 3, n ≡ 22 (mod 24), and m ≥ 1

• In addition, b0 = 0, b1 = 1 if r = 0 and m ≥ 2.
• If r = 1, 2 or r = 3 and n ≡ 22 (mod 24), then
b1 = b2 = · · · = bm−1 = 0.

• If r = 3 and n 6≡ 22 (mod 24), then b1 = b2 = · · · = bm−2 = 0.
• Furthermore, if r = 0, then b2 = b3 = · · · = bm−1 = 0.



Near-extremal Type I binary self-dual codes with
minimal shadow

Lemma
Using the above notations, we have the following results:

1. If n = 24m (m ≥ 2), then ci = αi0 for 0 ≤ i ≤ 2m, ci = βi1 for 2m+ 1 ≤ i ≤ 3m.

2. If n = 24m+ 2 (m ≥ 1), then ci = αi0 for 0 ≤ i ≤ 2m, ci = βi0 for 2m+ 1 ≤ i ≤ 3m.

3. If n = 24m+ 4 (m ≥ 1), then ci = αi0 for 0 ≤ i ≤ 2m, ci = βi0 for 2m+ 1 ≤ i ≤ 3m.

4. If n = 24m+ 6 (m ≥ 2), then ci = αi0 for 0 ≤ i ≤ 2m, ci = βi0 for 2m+ 2 ≤ i ≤ 3m.

5. If n = 24m+ 8 (m ≥ 2), then ci = αi0 for 0 ≤ i ≤ 2m, ci = βi1 for
2m+ 2 ≤ i ≤ 3m+ 1.

6. If n = 24m+ 10 (m ≥ 1), then ci = αi0 for 0 ≤ i ≤ 2m, ci = βi0 for
2m+ 2 ≤ i ≤ 3m+ 1.

7. If n = 24m+ 12 (m ≥ 1), then ci = αi0 for 0 ≤ i ≤ 2m, ci = βi0 for
2m+ 2 ≤ i ≤ 3m+ 1.

8. If n = 24m+ 14 (m ≥ 2), then ci = αi0 for 0 ≤ i ≤ 2m, ci = βi0 for
2m+ 3 ≤ i ≤ 3m+ 1.

9. If n = 24m+ 16 (m ≥ 2), then ci = αi0 for 0 ≤ i ≤ 2m, ci = βi1 for
2m+ 3 ≤ i ≤ 3m+ 2.

10. If n = 24m+ 18 (m ≥ 1), then ci = αi0 for 0 ≤ i ≤ 2m, ci = βi0 for
2m+ 3 ≤ i ≤ 3m+ 2.

11. If n = 24m+ 20 (m ≥ 1), then ci = αi0 for 0 ≤ i ≤ 2m, ci = βi0 for
2m+ 3 ≤ i ≤ 3m+ 2.

12. If n = 24m+ 22 (m ≥ 1), then ci = αi0 for 0 ≤ i ≤ 2m+ 1, ci = βi0 for
2m+ 3 ≤ i ≤ 3m+ 2.



Near-extremal Type I binary self-dual codes with
minimal shadow

Theorem
(Bouyuklieva, Harada, Munemasa) Let C be a near-extremal Type I
binary self-dual code with minimal shadow of length n. Then, we
have the following:

1. The weight enumerator of C is uniquely determined if
n = 24m+ 2, 24m+ 4, 24m+ 10.

2. The code C does not exist if:
2.1 n = 24m+ 2 and m ≥ 155
2.2 n = 24m+ 4 and m ≥ 156
2.3 n = 24m+ 10 and m ≥ 160



Near-extremal Type I binary self-dual codes with
minimal shadow

Theorem
(Han) Let C be a [24m, 12m, 4m+ 2] near-extremal Type I binary
self-dual code with minimal shadow. Then, we have the following:

1. The weight enumerator of C is uniquely determined.
2. The code C does not exist if m ≥ 323.

Proof.
If n = 24m (m ≥ 2), then ci = αi0 for 0 ≤ i ≤ 2m, ci = βi1 for
2m+ 1 ≤ i ≤ 3m. If m = 1, then n = 24. For this case, there is a
unique near-extremal Type I code. The weight enumerator is the
following: WC(1, y) = 1 + 64y6 + 375y8 + 960y10 + 1296y12 + · · · .
WS(1, y) = 6y4 + 744y8 + 2596y12 + · · · . We can see that the code
has minimal shadow. This proves the first statement.



Near-extremal Type I binary self-dual codes with
minimal shadow

Proof.
For the second statement,

c2m = α2m,0 = β2m,1 + β2m,mbm. (1)

bm = β−12m,m(α2m,0 − β2m,1). (2)

β2m,m = 1, α2m,0 = 6

(
5m− 1

m− 1

)
, β2m,1 =

3m− 1

2m

(
5m− 2

m− 1

)
. (3)

bm = 6

(
5m− 1

m− 1

)
− 3m− 1

2m

(
5m− 2

m− 1

)
. (4)



Near-extremal Type I binary self-dual codes with
minimal shadow

Proof.

c2m−1 = α2m−1,0 = β2m−1,1 + β2m−1,mbm + β2m−1,m+1bm+1. (5)

bm+1 = β
−1
2m−1,m+1(α2m−1,0 − β2m−1,1 − β2m−1,mbm). (6)

β2m−1,m+1 = −2−6
, (7)

α2m−1,0 = −
24m

2(2m− 1)

[(5m+ 3

m− 1

)
+
(5m+ 2

m− 2

)(7
2

)
+
(5m+ 1

m− 3

)(7
4

)
+
( 5m

m− 4

)(7
6

)]
(8)

β2m−1,1 = −2−6 ×
3m− 1

2m− 1

(5m− 3

m

)
, β2m−1,m = −

m

16
. (9)

bm+1 =
64(6m− 1)(5m− 1)(5m− 3)!

(4m+ 4)!(m− 1)!
h0(m), (10)

h0(m) = −64m5
+ 20640m

4 − 9388m
3
+ 582m

2 − 49m− 3. (11)

We can see that h0(m) < 0 if m ≥ 323.



Extremal Type I additive self-dual codes over
GF (4) with minimal shadow

• GF (4) : Finite Field of order 4

• An additive code : GF (4)-subgroup C ⊆ GF (4)n

• Hermitian Trace Inner Product : for x,y ∈ GF (4)n,
u ∗ v =

∑n
i=1 Tr(uivi2) =

∑n
i=1(uivi

2 + ui
2vi) (mod 2).

• Dual code : C⊥ = {u ∈ GF (4)n
∣∣u ∗ c = 0, ∀ c ∈ C}

• Self-dual : C = C⊥

• Type II : if the weights of all codewords are divisible by 2

• Type I : otherwise



Extremal Type I additive self-dual codes over
GF (4) with minimal shadow

Theorem
(Rains) Let C be an (n, 2n, d) additive self-dual code over GF (4). If C is Type
I, then d ≤ 2[n/6] + 1 if n ≡ 0 (mod 6), d ≤ 2[n/6] + 3 if n ≡ 5 (mod 6), and
d ≤ 2[n/6] + 2 otherwise. If C is Type II, then d ≤ 2[n/6] + 2.

⇒ A code that meets the appropriate bound is called extremal.

Theorem
Let C be an extremal Type II additive self-dual code over GF (4) of length n.
Then, the code C does not exist if n = 6m (m ≥ 17), n = 6m+ 2 (m ≥ 20),
and n = 6m+ 4 (m ≥ 22).

Proof.
The proof is the same as the ones for Type IV Hermitian self-dual linear
codes over GF (4)

⇒ Shadow code



Extremal Type I additive self-dual codes over
GF (4) with minimal shadow

Shadow code
• let C(0) be the subset of C consisting of all codewords whose weights

are multiples of 2
•

S = C⊥
0 \C.

• Alternately, it can be defined as:

S = {u ∈ GF (4)n | u ∗ v = 0 for all v ∈ C0, u ∗ v = 1 for all v ∈ C\C0}.

Lemma
Let C be a Type I additive self-dual code over GF (4) and S be the shadow
code of C. If u, v ∈ S, then u+ v ∈ C.

Lemma
Let C be an additive self-dual code over GF (4) of length n and minimum
weight d. Let S(y) =

∑n
r=0 Bry

r be the weight enumerator of S. Then:

1. B0 = 0

2. Br ≤ 1 for r < d/2



Extremal Type I additive self-dual codes over
GF (4) with minimal shadow

Let C be a Type I additive self-dual code over GF (4).

WC(x, y) =

[n/2]∑
i=0

ci(x+ y)n−2i{y(x− y)}i,

WS(x, y) =

[n/2]∑
i=0

(−1)i2n−3iciyn−2i(x2 − y2)i.

⇒

WC(1, y) =

n∑
j=0

ajy
j =

[n/2]∑
i=0

ci(1 + y)n−2i{y(1− y)}i

WS(1, y) =

[n/2]∑
j=0

bjy
2j+t =

[n/2]∑
i=0

(−1)i2n−3iciyn−2i(1− y2)i.



Extremal Type I additive self-dual codes over
GF (4) with minimal shadow

ci =

i∑
j=0

αijaj =

[n/2]−i∑
j=0

βijbj .

αi0 = −n
i

[
coeff. of yi−1 in (1 + y)−n−1+2i(1− y)−i

]
βij = (−1)i23i−n

(
k − j
i

)
,

where k = [n/2].



Extremal Type I additive self-dual codes over
GF (4) with minimal shadow

Definition
(Han) Let C be a Type I additive self-dual code over GF (4) of length
n = 6m+ r(0 ≤ r ≤ 5). Then, C is a code with minimal shadow if:

1. d(S) = 1 if r > 0; and
2. d(S) = 2 if r = 0,

where d(S) is the minimum weight of S.



Extremal Type I additive self-dual codes over
GF (4) with minimal shadow

Let C be an extremal Type I additive self-dual codes over GF (4) with
minimal shadow of length n = 6m+ r.
• r = 0 :
a0 = 1 and a1 = a2 = · · · = a2m = 0.
b0 = 0. b1 = 1 if m ≥ 2. b2 = b3 = · · · = bm−1 = 0.

• r = 1, 3 :
a0 = 1 and a1 = a2 = · · · = a2m+1 = 0.
b0 = 1 if m ≥ 1. b1 = b2 = · · · = bm−1 = 0.

• r = 2, 4 :
a0 = 1 and a1 = a2 = · · · = a2m+1 = 0.
b0 = 0. b1 = 1 if m ≥ 2. b2 = b3 = · · · = bm−1 = 0.
• r = 5 :
a0 = 1 and a1 = a2 = · · · = a2m+2 = 0.
b0 = 1. b1 = b2 = · · · = bm−1 = bm = 0.



Extremal Type I additive self-dual codes over
GF (4) with minimal shadow

Lemma
Using the above notations, we have the following results:

1. If n = 6m (m ≥ 2), then ci = αi0 for 0 ≤ i ≤ 2m, ci = βi1 for
2m+ 1 ≤ i ≤ 3m.

2. If n = 6m+ 1 (m ≥ 1), then ci = αi0 for 0 ≤ i ≤ 2m+ 1, ci = βi0
for 2m+ 1 ≤ i ≤ 3m.

3. If n = 6m+ 2 (m ≥ 2), then ci = αi0 for 0 ≤ i ≤ 2m+ 1, ci = βi1
for 2m+ 2 ≤ i ≤ 3m+ 1.

4. If n = 6m+ 3 (m ≥ 1), then ci = αi0 for 0 ≤ i ≤ 2m+ 1, ci = βi0
for 2m+ 2 ≤ i ≤ 3m+ 1.

5. If n = 6m+ 4 (m ≥ 2), then ci = αi0 for 0 ≤ i ≤ 2m+ 1, ci = βi1
for 2m+ 3 ≤ i ≤ 3m+ 2.

6. If n = 6m+ 5 (m ≥ 0), then ci = αi0 for 0 ≤ i ≤ 2m+ 2, ci = βi0
for 2m+ 2 ≤ i ≤ 3m+ 2.



Extremal Type I additive self-dual codes over
GF (4) with minimal shadow

Theorem
Extremal Type I additive self-dual codes over GF (4) with minimal
shadows of lengths n = 6m, 6m+ 1, 6m+ 2, 6m+ 3, and 6m+ 5 have
uniquely determined weight enumerators.

Theorem
Extremal Type I additive self-dual codes over GF (4) with minimal
shadows of lengths n = 6m+ 1 and n = 6m+ 5 do not exist.

Theorem
There are no extremal Type I additive self-dual codes over GF (4) with
minimal shadow if:

1. n = 6m and m ≥ 40;
2. n = 6m+ 2 and m ≥ 6;
3. n = 6m+ 3 and m ≥ 22.



Extremal Type I additive self-dual codes over
GF (4) with minimal shadow

Remark
Currently, n = 6m+ 4 is the unique untouched code length for the
nonexistence or an explicit bound for the length n of an extremal Type
I additive self-dual code over GF (4) with minimal shadow.



Near-extremal Type I additive self-dual codes over
GF (4) with minimal shadow

Definition
Let C be an (n, 2n, d) Type I additive self-dual code over GF (4).
Then, C is a near-extremal code if C is Type I and d = 2[n/6] if n ≡ 0
(mod 6), d = 2[n/6] + 2 if n ≡ 5 (mod 6), and d = 2[n/6] + 1
otherwise.



Near-extremal Type I additive self-dual codes over
GF (4) with minimal shadow

Let C be a near-extremal Type I additive self-dual code over GF (4)
with a minimal shadow of length n = 6m+ r.
• r = 0 :
a0 = 1 and a1 = a2 = · · · = a2m−1 = 0.
b0 = 0. b1 = 1 if m ≥ 3. b2 = b3 = · · · = bm−2 = 0.

• r = 1, 3 :
a0 = 1 and a1 = a2 = · · · = a2m = 0. b0 = 1 if m ≥ 1.
b1 = b2 = · · · = bm−1 = 0.

• r = 2, 4 :
a0 = 1 and a1 = a2 = · · · = a2m = 0.
b0 = 0. b1 = 1 if m ≥ 2. b2 = b3 = · · · = bm−1 = 0.
• r = 5 :
a0 = 1 and a1 = a2 = · · · = a2m+1 = 0.
b0 = 1 if m ≥ 1. b1 = b2 = · · · = bm−1 = 0.
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Lemma
Using the above notations, we have the following results:

1. If n = 6m (m ≥ 3), then ci = αi0 for 0 ≤ i ≤ 2m− 1, ci = βi1 for
2m+ 2 ≤ i ≤ 3m.

2. If n = 6m+ 1 (m ≥ 1), then ci = αi0 for 0 ≤ i ≤ 2m, ci = βi0 for
2m+ 1 ≤ i ≤ 3m.

3. If n = 6m+ 2 (m ≥ 2), then ci = αi0 for 0 ≤ i ≤ 2m, ci = βi1 for
2m+ 2 ≤ i ≤ 3m+ 1.

4. If n = 6m+ 3 (m ≥ 1), then ci = αi0 for 0 ≤ i ≤ 2m, ci = βi0 for
2m+ 2 ≤ i ≤ 3m+ 1.

5. If n = 6m+ 4 (m ≥ 2), then ci = αi0 for 0 ≤ i ≤ 2m, ci = βi1 for
2m+ 3 ≤ i ≤ 3m+ 2.

6. If n = 6m+ 5 (m ≥ 1), then ci = αi0 for 0 ≤ i ≤ 2m+ 1, ci = βi0
for 2m+ 3 ≤ i ≤ 3m+ 2.
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Theorem
Let C be an near-extremal Type I additive self-dual code over GF (4)
with a minimal shadow of length n = 6m+ 1. Then we have the
following:

1. The weight enumerator of C is uniquely determined.
2. The code C does not exist if m ≥ 22.

Proof.
If n = 6m+ 1 (m ≥ 1), then ci = αi0 for 0 ≤ i ≤ 2m, ci = βi0 for
2m+ 1 ≤ i ≤ 3m. If m = 0, then there is only one code for that code
length. This proves the first statement.
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For the second statement,

c2m = α2m,0 = β2m,0 + β2m,mbm.

bm = β−12m,m(α2m,0 − β2m,0).

β2m,m =
1

2
, α2m,0 =

6m+ 1

m

(
3m

m− 1

)
, β2m,0 =

1

2

(
3m

2m

)
.

bm =
12m+ 2

m

(
3m

m− 1

)
−
(
3m

2m

)
.
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c2m−1 = α2m−1,0 = β2m−1,0 + β2m−1,mbm + β2m−1,m+1bm+1.

bm+1 = β
−1
2m−1,m+1(α2m−1,0 − β2m−1,0 − β2m−1,mbm).

β2m−1,m+1 = −
1

16
, α2m−1,0 = −

6m+ 1

2m− 1

[(3m+ 2

m− 1

)
+ 10

(3m+ 1

m− 2

)
+ 5

( 3m

m− 3

)]

β2m−1,0 = −
1

16

( 3m

2m− 1

)
, β2m−1,m = −

m

8
.

bm+1 = 16 ·
6m+ 1

2m− 1

[(3m+ 2

m− 1

)
+ 10

(3m+ 1

m− 2

)
+ 5

( 3m

m− 3

)]
−
( 3m

2m− 1

)
− 2m

[
12m+ 2

m

( 3m

m− 1

)
−

(3m
2m

)]
.

bm+1 =
(3m)!

(2m+ 3)!(m− 1)!
h1(m),

h1(m) = −88m3
+ 1864m

2 − 34m− 62.

We can see that h1(m) < 0 if m ≥ 22.


