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Background

• Fq: finite field with q elements.

• A linear [n, k, d] code over a finite field Fq of length n, dimension k
and minimum distance d is called MDS (maximum distance separable)
if it attains the Singleton bound: d = n− k + 1.

• The dual of the linear code C (under Euclidean inner product) is

C⊥ =
{
(v1, · · · , vn) ∈ Fn

q : c1v1 + · · ·+ cnvn = 0 for any (c1, · · · , cn) ∈ C
}

.

• C is called self-dual if C = C⊥.
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Background

• In general, it is hard to determine the minimal distance of self-dual
code.

• Linea code C is MDS self-dual if it is both MDS and self-dual.

• Parameters of MDS self-dual code are completely characterized by its
length: [n, n

2 , n
2 + 1].
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Known results on MDS self-dual codes of length n:
(η is the quadratic multiplicative character on Fq)

q length n (even) Reference
q = 2m n ≤ q + 1 [4]
q odd (n− 1)|(q − 1), η(1− n) = 1 [8]
q odd (n− 2)|(q − 1), η(2− n) = 1 [8]
q = rs ≡ 3 (mod 4) n = pm + 1, p ≡ 3(mod 4) odd m [5]
q = rs, r ≡ 1(mod 4), s odd n = pm + 1, odd m, p ≡ 1(mod 4) [5]
q = rs, s ≥ 2 n = lr, 2l|(r − 1) [8]
q = rs, s ≥ 2 n = lr, (l − 1)|(r − 1), η(1− l) = 1 [8]
q = rs, s ≥ 2 n = lr + 1, l|(r − 1) and η(l) = 1 [8]
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Known results on MDS self-dual codes of length n:

q = rs, s ≥ 2 n = lr + 1, (l − 1)|(r − 1), η(−1) = 1 [8]
q = r2 n ≤ r [6]
q = r2 n = 2tr for any t ≤ (r − 1)/2 [6], [8]
q = r2, n = tr + 1, odd t and 1 ≤ t ≤ r [8]
q ≡ 1 (mod 4) n|(q − 1), n < q − 1 [8]
q ≡ 1 (mod 4) 4n · n2 ≤ q [6]
q = pk n = pr + 1, r|k [8]
q = pk n = 2pe, 1 ≤ e < k, η(−1) = 1 [8]

There are also other schemes to produce MDS self-dual codes. In [7],
Kim and Lee developed a building-up technique to produce MDS
self-dual code of large length from short length.
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Generalized Reed-Solomn codes

Generalized Reed-Solomn (GRS) code is a standard model of MDS codes.

• Let n be a positive integer with 1 < n ≤ q.

• Choose a = (α1, . . . , αn) to be an n-tuple of distinct elements of Fq.

• Choose v = (v1, . . . , vn) with vi ∈ F∗q.

• For 1 ≤ k ≤ q, generalized Reed-Solomon or GRS code

GRSk(a,v) = {(v1f(α1), . . . , vnf(αn)) : f(x) ∈ Fq[x],deg(f(x)) ≤ k−1}.
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Generalized Reed-Solomn codes

• The code GRSk(a,v) has a generator matrix

Gk(a,v) =




v1 v2 . . . vn

v1α1 v2α2 . . . vnαn
... ... . . . ...

v1α
k−1
1 v2α

k−1
2 . . . vnαk−1

n


 .

• GRSk(a,v) is a q-ary [n, k, n− k + 1] (MDS) code and its dual is
also MDS.
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Generalized Reed-Solomn codes

• La(αi) =
∏

1≤j≤n,j 6=i (αi − αj).

• The dual of GRS code is explicitly determined.

GRSk(a,v)⊥ = GRSn−k(a,uv−1)

where uv−1 = (u1v
−1
1 , . . . , unv−1

n ) with ui = La(αi)−1 for 1 ≤ i ≤ n.
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Generalized Reed-Solomn codes

Lemma 1. (J.Lin and C.Xing1) For n even and k = n
2 , if there exist

λ ∈ F∗q such that
λLa(αi) = w2

i

for some wi ∈ F∗q for all 1 ≤ i ≤ n, then the code GRSk(a,v) is MDS
self-dual, where vi = w−1

i for all 1 ≤ i ≤ n.

1 L.Jin and C.Xing, New MDS self-dual codes from generalized Reed- Solomon codes, IEEE Trans.
Inf. Theory, vol. 63, no. 3, pp. 1434–1438, Mar. 2017.
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Extended generalized Reed-Solomn codes

• Choose a = (α1, . . . , αn−1) to be an (n− 1)-tuple of distinct elements
of Fq.

• Choose v = (v1, . . . , vn−1) with vi ∈ F∗q.

• Extended GRS code of length n and dimension k:

GRSk(a,v,∞) = {(v1f(α1), . . . , vn−1f(αn−1), fk−1) :

f(x) ∈ Fq[x],deg(f(x)) ≤ k − 1},
where fk−1 is the coefficient of xk−1 in f(x).
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• the code GRSk(a,v,∞) has a generator matrix

Gk(a,v,∞) =




v1 v2 . . . vn−1 0
v1α1 v2α2 . . . vn−1αn−1 0

... ... . . . ... ...

v1α
k−1
1 v2α

k−1
2 . . . vn−1α

k−1
n−1 1


 .

• GRSk(a,v,∞) is a q-ary [n, k, n− k + 1] (MDS) code and its dual is
also MDS.
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Extended generalized Reed-Solomn codes

• The dual of GRS code is explicitly determined. Precisely,

GRSk(a,v,∞)⊥ = GRSn−k(a,uv−1,∞)

where uv−1 = (u1v
−1
1 , . . . , unv−1

n ) with ui = −La(αi)−1 for
1 ≤ i ≤ n.
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Extended generalized Reed-Solomn codes

Lemma 2. (H.Yan2) Let n be even and k = n
2 . If

−La(αi) = w2
i

for some wi ∈ F∗q for all 1 ≤ i ≤ n− 1, then the code GRSk(a,v,∞)
is MDS self-dual code, where vi = w−1

i for all 1 ≤ i ≤ n− 1.

2H. Yan, A note on the construction of MDS self-dual codes, Cryptogr. Commun., Published online,
March 2018, see https://doi.org/10.1007/s12095-018-0288-3
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Constructions based on multiplicative structure of F∗q

Theorem 1. Let q = r2 where r is odd prime power.

• n = tm;

• 1 ≤ t ≤ r−1
gcd(r−1,m);

• m | (q − 1).

Assume both q−1
m and n are even. Then there exists a q-ary [n, n

2 ]
MDS self-dual code over Fq.

Remark: Theorem 3.4 (i) in L.Jin and C. Xing3 is a special case of the
preceding result with m = 1.

3 L.Jin and C.Xing, New MDS self-dual codes from generalized Reed- Solomon codes, IEEE Trans.
Inf. Theory, vol. 63, no. 3, pp. 1434–1438, Mar. 2017.
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Proof: Let α be a primitive m-th root of unity.

• Group isomorphism and monomorphism

F∗r
/

(F∗r ∩ 〈α〉) ' (F∗r · 〈α〉)
/
〈α〉 ≤ F∗q

/
〈α〉

• Choose βi ∈ F∗r (0 ≤ i ≤ t− 1) to be cost representatives of

(F∗r × 〈α〉)
/
〈α〉.

• Choose vector

a = (αβ0, . . . , α
mβ0, αβ1, . . . , α

mβ1, . . . , αβt−1, . . . , α
mβt−1).
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Constructions based on multiplicative structure of F∗q

• For any 1 ≤ i ≤ m and for any 0 ≤ z ≤ t− 1, we have

La(βzα
i) = βz

m−1 ·m · α−i ·
t−1∏

l=0,l 6=z

(βz
m − βl

m).

• Note that βm−1
z ,

∏t−1
l=0,l 6=z (βz

m − βl
m),m ∈ F∗r ⊂ F∗2q since Fr2 = Fq.

• α is also a square since q−1
m is even.

Then there exists a q-ary [n, n
2 ] MDS self-dual code over Fq.
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Constructions based on multiplicative structure of F∗q

Theorem 2. Let q = r2 where r is odd prime power.

• n = tm + 1 is even;

• 1 ≤ t ≤ r−1
gcd(r−1,m);

• m | (q − 1).

Then there exists a q-ary [n, n
2 ] MDS self-dual code over Fq.
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Constructions based on multiplicative structure of F∗q

Proof. By considering extended GRS codes GRSk(a,v,∞), the proof is
similar as that of Theorem 1.

• La(βzα
i) = βz

m−1 ·m · α−i ·∏t−1
l=0,l 6=z (βz

m − βl
m).

• −La(βzα
i) ∈ F∗2q .

There exists a q-ary [n, n
2 ] MDS self-dual code over Fq.
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Constructions based on multiplicative structure of F∗q

Theorem 3. Let q = r2 where r is odd prime power.

• n = tm + 2 is even;

• 1 ≤ t ≤ r−1
gcd(r−1,m);

• m | (q − 1).

Then there exists a q-ary [n, n
2 ] MDS self-dual code over Fq.
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Constructions based on multiplicative structure of F∗q

Proof. • The elements α and βi are chosen in the same way as in
Theorem 1.

• Define the generalized Reed-Solomn code GRSk(a,v,∞) with

a = (0, αβ0, . . . , α
mβ0, αβ1, . . . , α

mβ1, . . . , αβt−1, . . . , α
mβt−1).

• La(βzα
i) = βz

m ·m ·∏t−1
l=0,l 6=z (βz

m − βl
m) and

La(0) = ±
(∏t−1

l=0 βl

)m

.

• Both −La(βzα
i) and −La(0) are in F∗2q .

There exists a q-ary MDS self-dual code of length n = mt + 2.
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Constructions based on hybird structure of F∗q

Theorem 4. Let q = pm with p odd prime.

• 2t | (p− 1);

• e < m;

• n = 2tpe.

If q−1
2t is even, then there exists self-dual MDS code with length 2tpe.

Remark: For t = 1, this result is exactly Theorem 4 (ii) in Yan 4.

4H. Yan, A note on the construction of MDS self-dual codes, Cryptogr. Commun., Published online,
March 2018, see https://doi.org/10.1007/s12095-018-0288-3
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Proof:

• Let V be an e-dimensional Fp-vector subspace in Fq satisfying
V ∩ Fp = 0.

• Denote by ω ∈ Fp a primitive element of order 2t.

• Choose a =
2t−1⋃
j=0

(
ωj + V

)
.

• For any b ∈ ωi + V ,

La(b) = ω−i

(
∏

0 6=v∈V

v

)
·
( ∏

v∈V

2t−1∏
h=1

(
1 + v − ωh

))
.
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• Denote by c =

(
∏

0 6=v∈V

v

)
·
( ∏

v∈V

2t−1∏
h=1

(
1 + v − ωh

))
. Then

La(b) = ω−ic.

Since ω ∈ F∗2q . As a consequence, η (La(b)) = η(c) which is independent
of the choice of b. Therefore there exists self-dual MDS code with length
|a| = 2tpe.
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Conclusion

• In this talk, we present four construcitons of MDS self-dual codes
based on multiplicative (and additive) structure of finite fields.

• For many fixed q, the codes in our constructions have length n which
is determined by two factors. In this sense, it may produce more MDS
self-dual codes than before.

For example, for q = 1512, there are (approximately?) 243
differnt n for which MDS self-dual code of lengths n are constructed
in all the previous works.

In our constructions, there are 713 different lengths n.
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Thanks for your attention
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