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linear perfect Lee codes

Lee codes

Definition

For u = (u1, · · · , un), v = (v1, · · · , vn) ∈ Zn, their Lee distance is defined
by

dL(u, v) =
n∑

i=1

|ui − vi |.

A Lee code C is a subset of Zn endowed by the Lee distance.

If C has further the structure of an additive group, then C is called
linear Lee code.

C is r -error-correcting: for x 6= y ∈ C , dL(x , y) ≥ 2r + 1.

An r -error-correcting Lee code C is called perfect if for each x ∈ Zn,
there exists a unique c ∈ C such that dL(x , c) ≤ r ; denoted by
PL(n, r)-code.
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linear perfect Lee codes

Perfect Lee codes and tilings

For V ⊂ Zn and x ∈ Zn, V + x = {v + x : v ∈ V }.
A collection T = {V + l : l ∈ L}, L ⊆ Zn of copies of V constitutes a
tiling of Zn by V if T forms a partition of Zn.

If L further forms a lattice, then T is called a lattice tiling of Zn.

Let S(n, r) = {x ∈ Zn : dL(x , 0) = |x1|+ · · ·+ |xn| ≤ r}.
C is a PL(n, r)-code if and only if {S(n, r) + c : c ∈ C} constitutes a
tiling of Zn by S(n, r).

C is a linear PL(n, r)-code if and only if {S(n, r) + c : c ∈ C} forms a
lattice tiling of Zn.
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Lee spheres
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Golomb-Welch conjecture

In 1968, Golomb and Welch constructed PL(1, r)-codes, PL(2, r)-codes
and PL(n, 1)-codes explicitly. In the same paper, they also proposed the
following conjecture.

Conjecture (Golomb-Welch conjecture)

For n ≥ 3 and r ≥ 2, there does not exist PL(n, r)-code.

In 1970, Golomb and Welch proved the nonexistence of PL(n, r)-codes
for given n and r ≥ rn, where rn has not been specified.

Improvements by Post (1975), Lepisto (1981), Horak, Kim (2017).

Roughly speacking, for given n, if r ≥
√

2n then there is no PL(n, r).
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Golomb-Welch conjecture

A special case of the Golomb-Welch conjecture, the nonexistence of linear
PL(n, r)-codes, can be converted into an algebraic combinatorics problem.

Theorem (Horak, AlBdaiwi 2012)

Let S ⊆ Zn such that |S | = m. There is a lattice tiling of Zn by translates
of S if and only if there are both an abelian group G of order m and a
homomorphism φ : Zn 7→ G such that the restriction of φ to S is a
bijection.

Corollary

There is a linear PL(n, r)-code if and only if there are both an abelian
group G and a homomorphism φ : Zn 7→ G such that the restriction of φ
to S(n, r) is a bijection.
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Example

For n = 2 and r = 2, G = C13. Note that each homomorphism
φ : Zn 7→ G is determined by the values of φ(ei ) for i = 1, · · · , n, where
{ei : i = 1, · · · , n} is the standard basis of Zn. Here we may take
φ(e1) = 1 and φ(e2) = 5.
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linear perfect Lee codes

Linear Perfect Lee codes and degree-diameter problem

In a graph Γ, the distance d(u, v) from a vertex u to another vertex v
is the length of a shortest u-v path in Γ.

The largest distance between two vertices in Γ is the diameter of Γ.

Let Γ = (V ,E ) be a graph of maximum degree d and diameter k .
According to the famous Moore bound, Γ has at most
1 + d + d(d − 1) + · · ·+ d(d − 1)k−1 vertices. When the order of V
equals 1 + d + d(d − 1) + · · ·+ d(d − 1)k−1, the graph Γ is called a
Moore graph.

Problem

Given positive integers d and k, find the largest possible number N(d , k)
of vertices in a graph with maximum degree d and diameter k.
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Linear Perfect Lee codes and degree-diameter problem

Let G be a multiplicative group with the identity element e and
S ⊆ G such that S−1 = S and e 6∈ S . Here S−1 = {s−1 : s ∈ S}.
The Cayley graph Γ(G , S) has a vertex set G , and two distinct
vertices g , h are adjacent if and only if g−1h ∈ S .

The diameter of a Cayley graph Γ(G ,S) is k if and only if k is the
smallest integer such that all elements in G appear in
{Πk

i=1si : si ∈ S ∪ {e}}.
There exists a linear PL(n, r)-code if and only if there exists an
abelian Cayley graph with degree 2r , diameter n and vertices
|S(n, r)|.
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Two algebraic approaches

As summarized in a survey by Horak and Kim, it appears that for a small
radius r and a large dimension n, the nonexistence of a PL(n, r)-code is
difficult.
Two different approaches.

A polynomial method for r = 2 by Kim.

An algebraic number theory method for r = 2, 3.
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Kim’s method

Theorem

Suppose that 2n2 + 2n + 1 = mv where v is a prime and v > 2n + 1.
Define a = min{a ∈ Z+ : v | 4a + 4n + 2} and b is the order of 4 modulo
v. (If there is no a with v | 4a + 4n + 2, then we let a =∞.) Assume that
there is a linear PL(n, 2)-code. Then there exists at least one
` ∈ {0, 1, . . . , bm4 c} such that the equation

a(x + 1) + by = n − `

has nonnegative integer solutions.
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Kim’s method–main idea

Let the abelian group G be additive and let 0 be its identity element.

Then there exists S = {si : i = 1, . . . , n} ⊆ G such that

{0}, {±si : i = 1, . . . , n}, {2si : i = 1, . . . , n}, {±si±sj : 1 ≤ i < j ≤ n}

form a partition of G .

Let H be a subgroup of G of index v . Let ρ : G → G/H be the
canonical homomorphism and xi = ρ(si ). Then the multisets

{0}, {∗ ± xi : i = 1, . . . , n ∗}, {∗ ± 2xi : i = 1, . . . , n ∗},
{∗ ± xi ± xj : 1 ≤ i < j ≤ n ∗}

form a partition of mG/H.
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Kim’s method–main idea

Let k be an integer

n∑
i=1

(
(x2k

i + (−xi )
2k + (2xi )

2k + (−2xi )
2k
)

+
∑

1≤i<j≤n

(
(xi + xj)

2k + (xi − xj)
2k + (−xi + xj)

2k + (−xi − xj)
2k
)

=(4k + 4n + 2)S2k + 2
k−1∑
t=1

(
2k

2t

)
S2tS2(k−t)

where S t :=
∑n

i=1 x t
i .

(4k + 4n + 2)S2k + 2
k−1∑
t=1

(
2k

2t

)
S2tS2(k−t) =

{
0, v − 1 - 2k ,

−m, v − 1 | 2k .

Tao Zhang (Guangzhou University) linear perfect Lee codes July 5, 2018 13 / 28



linear perfect Lee codes

Kim’s method–main idea

Let a and b be the least positive integers satisfying v | 4a + 4n + 2
and p | 4b − 1. Define

X = {ax + by : x ≥ 1, y ≥ 0}.

Claim 1: If 1 ≤ k < v−1
2 is not in X , then S2k = 0.

Suppose that S2k = 0 for each k ≤ k0 − 1 that is not in X .
Assume that k0 /∈ X .
As X is closed under addition, for any t, at least one of t and k0 − t is
not in X .
For any integer k , if v | 4k + 4n + 2, then k must be of the form a + by
whence k ∈ X . This implies that v - 4k0 + 4n + 2.

0 = (4k0 + 4n + 2)S2k0 + 2
∑k0−1

t=1

(
2k0

2t

)
S2tS2(k0−t) = (4k0 + 4n + 2)S2k0 .

Thus S2k0 = 0.
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Kim’s method–main idea

Let ek be the elementary symmetric polynomials with respect to x2
1 ,

x2
2 , · · · , x2

n .

Claim 2: If 1 ≤ k ≤ n < v−1
2 is not in X , then ek = 0.

Suppose that ek = 0 for each k ≤ k0 − 1 not in X and k0 /∈ X .
As X is closed under addition, for each 0 < t < k0, at least one of t
and k0 − t is not in X .
et = 0 or S2(k0−t) = 0.
Together with Newton identities on x2

1 , . . . , x
2
n , we have

k0ek0 = ek0−1S2 + · · ·+ (−1)i+1ek0−iS2i + · · ·+ (−1)k0−1S2k0 =
(−1)k0−1S2k0 = 0.
ek0 = 0.

0 appears at most bm4 c times in xi ’s.

Suppose that 0 appears ` times in S . Then en−l is the production of
those nonzero x2

i ’s, whence en−l 6= 0.

n − l is in X .
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Group ring

Let G be a finite group.

The group ring Z[G ] is a free abelian group with a basis {g | g ∈ G}.
For any set A whose elements belong to G (A may be a multiset), we
identify A with the group ring element

∑
g∈G agg , where ag is the

multiplicity of g appearing in A.

Given any A =
∑

g∈G agg ∈ Z[G ], we define A(t) =
∑

g∈G agg t .

Addition and multiplication:∑
g∈G

agg +
∑
g∈G

bgg =
∑
g∈G

(ag + bg )g ,

∑
g∈G

agg
∑
g∈G

bgg =
∑
g∈G

(
∑
h∈G

ahbh−1g )g .
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A group ring equation r = 2

Lemma

Let n ≥ 2, then there exists a linear PL(n, 2)-code if and only if there exist
a finite abelian group G of order 2n2 + 2n + 1 and T ⊆ G viewed as an
element in Z[G ] satisfying

1 1 ∈ T ,

2 T = T (−1),

3 T 2 = 2G − T (2) + 2n.
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A group ring equation r = 2

Proof.

There exists a linear PL(n, 2)-code if and only if there are both an
abelian group G (written multiplicatively) of order 2n2 + 2n + 1 and a
homomorphism φ : Zn 7→ G such that the restriction of φ to S(n, 2)
is a bijection.

Each homomorphism φ : Zn 7→ G is determined by the values of φ(ei )
for i = 1, · · · , n, where {ei : i = 1, · · · , n} is the standard basis of Zn.

There exists a linear PL(n, 2)-code if and only if there exists an
n-subset {a1, a2, . . . , an} ⊆ G such that

G = 1 +
n∑

i=1

(ai + a−1
i + a2

i + a−2
i ) +

∑
1≤i<j≤n

(ai + a−1
i )(aj + a−1

j ).

Let T = 1 +
∑n

i=1(ai + a−1
i ).
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Main results r = 2

Let H be a subgroup of G with order m and ρ : G → G/H be the
canonical homomorphism.

For S =
∑

g∈G sgg , we define S = ρ(S) =
∑

g∈G sgρ(g).

Thus
T =

∑
ḡ∈G/H

aḡ ḡ ∈ Z[G/H],

where aḡ =
∑
{g :ρ(g)=ḡ} ag .

Then previous conditions become:

1 T = T
(−1)

,

2 T
2

= 2mG/H − T
(2)

+ 2n.
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Main results r = 2

For small |G/H|, we can prove some results.

Theorem

Suppose that 8n + 1 is not a square in Z. Assume that one collection of
the following conditions holds

1 5 | 2n2 + 2n + 1, 8n − 3 6= 5k2 for any k ∈ Z;

2 13 | 2n2 + 2n + 1, 8n − 3 6= 13k2 for any k ∈ Z;

3 17 | 2n2 + 2n + 1.

Then there are no linear perfect Lee codes of radius 2 for dimension n.
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Main results r = 2 (Idea)

Case I: |G/H| = 5.

T ∈ Z[C5]

T
2 ≡ −T

(2)
+ 2n (mod G/H),

(T
(2)

)2 ≡ −T
(4)

+ 2n = −T + 2n (mod G/H),

T
4 − 4nT

2
+ T + 4n2 − 2n ≡ 0 (mod G/H).

T
4 − 4nT

2
+ T + 4n2 − 2n = (T

2 − T − 2n + 1)(T
2

+ T − 2n).

Let S = a + bG ∈ Z[G ] with |G | = v . Assume that positive integers v
and m satisfy a + vb = 2n + 1 and mv = 2n2 + 2n + 1, and S satisfies

S2 = 2mG − S + 2n.

Then 8n + 1 is a square in Z.
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Main results r = 2 (Idea)

T
2 − T − 2n + 1 ≡ 0 (mod G/H).

Take a non-principle character χ ∈ Ĝ/H, then χ(T ) ∈ Z[ζ5] is such
that

χ(T )2 − χ(T )− 2n + 1 = 0.

8n − 3 is a square in Z[ζ5].
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Main results r = 2

Theorem
Let n be a positive integer and p be a prime divisor of 2n. Let G be an abelian group of
order 2n2 + 2n + 1. Suppose that H is one of its subgroup of index v. Define

m = 2n2+2n+1
v

, m1 := min{i : i ∈ Z≥0, i ≡ m (mod p)} and
m2 := min{i : i ∈ Z≥0, i ≡ 2m (mod p)}. Let f denote the order of p modulo v,
l = min{i : pi ≡ ±1 (mod v)} and d = (v − 1)/f . Define

λ = max{r : r | (pl − 1), r | (2i − pj) for 2i ≡ pj (mod v)}.

Assume that

v is a prime,

2n + 1 is smaller than m1v and m2v,

σ2 and σp generates the Galois group Gal(Q(ζv )/Q) where ζv is a primitive v-th
root of unity.

λ 6= 1 or v.

Then there are no linear perfect Lee codes of radius 2 for dimension n.
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Main results r = 2

Remark

By applying above results, there are no PL(n, 2) for 3 ≤ n ≤ 100 except
n = 16, 21, 36, 55, 64, 66, 78, 92.
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A group ring equation r = 3

Lemma

Let n ≥ 3, then there exists a linear PL(n, 3)-code if and only if there exist

a finite abelian group G of order 1 + 6n2 + 4n(n−1)(n−2)
3 and T ⊆ G viewed

as an element in Z[G ] satisfying

1 1 ∈ T ,

2 T = T (−1),

3 T 3 = 6G − 3T (2)T − 2T (3) + 6nT .
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Main results r = 3

For small |G/H|, we can prove some results.

Theorem

Assume that n ≡ 1, 5 (mod 7). If 24n + 1 is not a square or
84 - (24n + 1)2 ± 6

√
24n + 1 + 29, then there are no linear perfect Lee

codes of radius 3 for dimension n.

Remark

When n ≡ 5 (mod 7), 24n + 1 can never be a square.
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Conclusion

It appears that our approach can be further applied on the existence of
PL(n, r) for r > 3. However, for r = 4, 5, · · · , the group ring equations
become more complicated and contain much more terms. For instance, for
r = 4, there are T (4), T (3)T , T (2)T (2), · · · in the equations.
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The End

T H A N K
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