Instruction for candidates of PhD Students

Basic Conditions Examinees should possess the deep-set fundament of algebra and matrix theory

Subjects for the entrance examination

    Choose any two among the following:

         Matrix Algebra   Reference: Fuzhen Zhang, Matrix Theory--Basic Results and Techniques, Springer-Verlag New York INc., Second Edition, 2011.

         Matrix Analysis Reference: Roger A. Horn and Charles R. Johnson, Matrix AnalysisPosts & Telecom Press, Second Edition, 2015.

         Algebra Reference: T.W. Hungerford, Algebra, Springer-Verlag New York INc., Second Edition, 1980.

Back to Homepage

Some Links

²   Shanghai University

²   Department of Mathematics, Shanghai University

²  International Research Center for Tensor and Matrix Theory of Shanghai University (IRCTMT)

²  Applied Algebra and Optimization Research Center (AORC),
Sungkyunkwan University, Korea

²   Homepage of Delin Chu

²   Homepage of Chi-Kwong Li

²   Homepage of Liqun Qi

²   Homepage of Tin-Yau Tam

²    Homepage of Fuzhen Zhang

²   Wikipedia

²   Key Course of Shanghai Municipal Education Commission

²   SIAM Journals

²   Mathematics Journals on the Web

²  Front for the Mathematics ArXiv(Preprints)

²   MathSearch

²   Mathematical Preprints

²   Math World

²   Acta Math. Sinica


²   Automatica

² Linear Algebra and its Applications

² SIAM Journal on Matrix Analysis and Applications

²    Some International Mathematics Journals

²    Math culture, career, etc.Various interesting articles can be found  here

²    Problems and Solutionshere

²    ILAS Publications

²   Linear Algebra Related Conferences

²   4th International Conference on Matrix Analysis and Applications (2-5 July, 2013)

²   2013 Shanghai International Conference on Matrix Analysis and Applications (28-29 Dec.,2013)

²   AMS Mathematics Subject Classification

²   Abbreviations of Names of Serials

²  Tex mathematical symbols

²  Mathematics Genealogy

²  American Mathematical Society

²  MathSciNet

²   Society for Industrial and Applied Mathematics

Back to Homepage