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Portfolio selection

I Portfolio selection is to seek a best allocation of wealth
among a basket of securities.

I Markowitz (1952) developed a mean-variance (MV) model for
portfolio selection which was the first return-risk optimization
framework of investment theory.

Henry. M. Markowitz
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Mean-variance model

I In MV model, the expected value of portfolio is measured by
the mean of the portfolio and the risk is measured by the
variance of the portfolio.

I Let ξ be the random vector of expected returns of n risky
assets. Suppose ξ has the following mean vectors:

µ = (µ1, . . . , µn)
T , µi = E (ξi ), i = 1, . . . , n,

and co-variance matrix:

Σ = E [(ξ − E (µ))(ξ − E (µ))T ].

I The variance of the portfolio x is

σ2(ξT x) = xTQx
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I The mean-variance optimization model is

(MV ) min xTQx

s.t. µT x ≥ ρ,

x ∈ X ,

where ρ is a prescribed return level, and X is a set of
constraints representing real-world trading conditions such as
no shorting, bounds on exposure to groups of assets, sector
allocation and regulation conditions. These constraints usually
can be expressed as linear equality or inequality constraints.

I The classical MV model is a convex quadratic program which
is polynomially solvable.

I Various extensions and improvement of MV model have been
proposed since the pioneering work of Markowitz.
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Extensions and improvement

I Various alternative risk measures:
I Absolute deviation;
I Downside risk measures such as semi-variance and lower partial

moment;
I Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR);

I Index tracking (passive portfolio management)

I Robust portfolio selection

I Multi-period portfolio selection

I Continuous time portfolio selection models
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Portfolio selection models with hard constraints

I In this talk, we focus on portfolio selection models with hard
constraints which arise from real-world financial optimization
modeling.

I We consider the following three types of constraints in the
mean-variance framework:

I Cardinality and minimum buy-in threshold constraints;
I Probabilistic constraint (VaR constraint);
I Factor-risk constraints (marginal risk).
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Cardinality and minimum buy-in threshold constraints

Let x = (x1, . . . , xn) be the vector of portfolio weights investing on
n securities.

I Cardinality constraint: the number of assets in the optimal
portfolio should be limited:

|supp(x)| ≤ K ,

where supp(x) = {i | xi 6= 0}, 1 ≤ K << n.

I The need to account for this limit is due to the transaction
cost and managerial concerns.

I |supp(x)| = ‖x‖0 is also called zero norm of x . A portfolio x
with few nonzero elements is called sparse solution, or limited
diversified portfolio.
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I Minimum buy-in threshold:

xi ≥ αi , i ∈ supp(x),

or
xi ∈ {0} ∪ [αi , ui ].

So, xi is a semi-continuous variable.

I Cardinality constraint arises in portfolio selection models using
both active and passive investment strategies.
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MV models with cardinality and minimum buy-in threshold

I Cardinality constrained QP:

(CCQP1) min
1

2
xTQx + cT x

s.t. x ∈ X ,

|supp(x)| ≤ K , (cardinality constraint)
xi ≥ αi , ∀i ∈ supp(x), (threshold constraint)
0 ≤ xi ≤ ui , i = 1, . . . , n,

where supp(x) = {i | xi > 0}, αi > 0, 0 < K < n.

I Difficulty: testing the feasibility of (CCQP1) is already
NP-complete when A has three rows (Bienstock (1996)).
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I Construct a portfolio with a few assets to track the
performance of some market index:

tracking error = (x − x0)
TΣ(x − x0),

where x is the trading vector with small number of nonzero
variables and x0 is the weight vector of the benchmark index
(S&P 500, FTSE 100, N225).

I Portfolio selection with cardinality and tracking error control:

(CCQP2) min xTΣx ,

s.t. (x − xB)TΣ(x − xB) ≤ σ0,

µT x ≥ ρ, eT x = 1,

|supp(x)| ≤ K ,

0 ≤ x ≤ u, xi ≥ ai , ∀i ∈ supp(x).

11 / 41



I The cardinality constraint can be represented by

eT y ≤ K , 0 ≤ xi ≤ uiyi , y ∈ {0, 1}n.

I The minimum buy-in threshold xi ∈ {0} ∪ [αi , ui ] can be
expressed as

αiyi ≤ xi ≤ uiyi , y ∈ {0, 1}n.

I So that the cardinality constrained QP can be reformulated as
a mixed-integer quadratic program (MIQP):

min
1

2
xTQx + cT x

s.t. x ∈ X ,

eT y ≤ K , y ∈ {0, 1}n,

αiyi ≤ xi ≤ uiyi , i = 1, . . . , n.
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Existing solution methods for cardinality constrained QP

I Branch-and-bound methods (based on continuous relaxation),
e.g., MIQP solvers in CPLEX 12.1, Gurobi and Zimpl (?).
Only small-size problems (n ≤ 50) can be solved to global
optimality.

I New MIQP reformulation using Lagrangian decomposition or
perspective reformulation techniques (Frangioni and Gentile
(2006), Zheng, Sun, Li (2010)).

I Branch-and-cut methods using cutting plane derived from the
cardinality constraints.
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Local Methods for Cardinality Constrained Problems

I Consider a general cardinality constrained QP:

(P) min
1

2
xTQx + cT x

s.t. x ∈ X ,

‖x‖0 ≤ K .

This problem is still NP-hard even without the minimum
buy-in threshold constraints.

I Note that

‖x‖0 =
n∑

i=1

sign(|xi |),

where y = sign(|z |) is discontinuous at 0.
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I The function y = sign(|z |):

0

z

1

y

y=sign(|z|)

I Linear or nonlinear approximations (smooth or nonsmooth) to
y = sign(|z |) can be considered. For example:

I convex approximation (relaxation), e.g., `1-norm relaxation
I p-norm approximation (0 < p < 1)
I piecewise smooth approximation
I piecewise linear approximation
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p-norm approximation

I p-norm approximation:

lim
p→0

‖x‖p
p = lim

p→0

n∑

i=1

|xi |p = ‖x‖0 (not uniformly convergent).

Figure: the behavior of p-norm function
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I p-norm approximation to cardinality constraint:

min
1

2
xTQx + cT x

s.t. x ∈ X ,

‖x‖p
p ≤ K .

I p-norm approximation and penalized problem:

min
1

2
xTQx + cT x + λ‖x‖p

p

s.t. x ∈ X ,
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`1 norm approximation

I If p = 1, then we have `1-norm approximation approximation:

min
1

2
xTQx + cT x

s.t. x ∈ X , x ∈ [−1, 1]n,

‖x‖1 ≤ K ,

where we have included the box constraint x ∈ [−1, 1]n.

I Interestingly, the `1-norm approximation is equivalent to the
continuous relaxation of (MIQP):

min
1

2
xTQx + cT x

s.t. x ∈ X ,

eT y ≤ K , y ∈ [0, 1]n,

− yi ≤ xi ≤ yi , i = 1, . . . , n.
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Terence Tao (陶哲轩), UCLA, Fields Medal, 2006 
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I This piecewise linear function can be expressed as a D.C.
function:

ϕ(z , t) = min{1

t
‖x‖1, 1} =

1

t
|z | − 1

t

[
(z − t)+ + (−z − t)+

]
.

I It is an underestimation: ϕ(z , t) ≤ |sign(z)|, ∀z ∈ <.

I Let

φ(x , t) =
n∑

i=1

ϕ(xi , t) =
1

t
|x |1−1

t

n∑

i=1

[
(xi − t)+ + (−xi − t)+

]
.

Then, for any x ∈ <n,

lim
t→0+

φ(x , t) = ‖x‖0.

(Not uniformly convergent)
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I Consider the piecewise linear approximation to cardinality
constraint:

(Pt) min
1

2
xTQx + cT x

s.t. x ∈ X ,
1

t
‖x‖1 − g(x , t) ≤ K

where g(x , t) =
∑n

i=1[(xi − t)+ + (−xi − t)+. This problem
can be also expressed as

min
1

2
xTQx + cT x

s.t. x ∈ X ,
1

t
eT z − g(x , t) ≤ K ,

− xi ≤ zi ≤ xi , i = 1, . . . , n,
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Successive Linearization Algorithm

I Step 0: Find an initial feasible solution x0 of (P) (via `1-norm
relaxation). Choose ξ0 ∈ ∂g(x0, t), set k = 0.

I Step 1: Solve the linearization subproblem (a convex QP):

min f (x) = xTQx + cT x

s.t. x ∈ X ,
1

t
eT z − 1

t
[g(xk , t) + (ξk)T (x − xk)] ≤ K ,

− xi ≤ zi ≤ xi , i = 1, . . . , n

to obtain an optimal solution (xk+1, zk+1).

I Step 2: If xk+1 = xk , stop (KKT solution).

I Step 3: Choose ξk+1 ∈ ∂g(xk+1, t). Set k := k + 1 and go to
Step 1.

22 / 41



Questions

I How to analyze the relation between the solution of the
approximation problem and the solution of (P)?

I How to design efficient algorithms for the approximation
problems?

I How to recover a feasible solution of (P) from the
approximation solution x∗? (e.g., setting some x∗i = 0 if
|x∗i | ≤ ε and resolve the QP)

I What is the quality of the recovered feasible solution from the
KKT point of (Pt)?
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Probabilistic Constraints

I General form of quadratic program with a probabilistic (or
chance) constraint:

(P) min xTQx + cT x

s.t. x ∈ X ,

P(ξTBx ≥ R) ≥ 1− ε,

where

X = {x | Ex ≤ f , 0 ≤ x ≤ u, xTAix+bT
i x+di ≤ 0, i = 1, . . . , r},

Q and Ai , i = 1, . . . , r are positive semidefinite n × n
symmetric matrices, c ∈ <n, B is an m × n matrix, ξ is a
random vector in <m, P denotes the probability, 0 < ε < 1.
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VaR constrained portfolio selection

I The Value-at-Risk (VaR) constraint can be expressed as

P(ξT x ≥ R) ≥ 1− ε,

where ξT x represents the random return of the portfolio with
weight vector x , R is the prescribed minimal level of return,
and ε is usually a small number, ε = 0.05, for example.

I The VaR-constrained mean-variance portfolio selection model:

min xTΣx − σµT x

s.t. P(xT ξ ≥ R) ≥ 1− ε,

x ∈ X .
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Existing solution methods

I Extensive study for LP with a special probabilistic constraint:
P(Ax ≥ ξ) ≥ 1− ε, where ξ is a random vector, Prékopa
(2003), Ruszczynski (2002), Luedtke, Ahmed and Nemhauser
(2010) ...

I If the random vector ξ has a known (continuous) distribution,
then safe (conservative) approximation technique can be used
to obtain a convex approximation, e.g., CVaR approximation,
Nemirovski and Shapiro (2006).

I Scenario approximation is another way of constructing
tractable convex approximations to probabilistic constraint.
Lower bounds of sample size to ensure the feasibility of the
solution generated from scenario approximations are derived in
Calafiore and Campi (2005, 2006) and Nemirovski and
Shapiro (2009).
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I Suppose that ξ has a finite discrete distribution: ξ takes finite
number of values ξ1, . . . , ξN ∈ <m with equal probability,
called scenarios.

I Let αi be the minimum value of ξT
i Bx for all possible

scenarios, i.e, (ξi )TBx ≥ αi , i = 1, . . . ,N. Let K = bNεc.
I Then, (P) can be reformulated as a mixed integer QP

program (standard MIQP):

(MIQP0) min xTQx + cT x

s.t. (ξi )TBx ≥ R + yi (αi − R), i = 1, . . . ,N,
T∑

i=1

yi ≤ K ,

x ∈ X , yi ∈ {0, 1}, i = 1, . . . ,N.
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A new reformulation Lagrangian decomposition
I Define

αi = min
x∈X

(ξi )TBx , i = 1, . . . ,N

βi = max
x∈X

(ξi )TBx , i = 1, . . . ,N

Θ = {θ ∈ <N | Q −
N∑

i=1

θiB
T ξi (ξi )TB º 0}.

I For any θ ∈ Θ, problem (P) can be written as

(Pθ) min xT (Q −
N∑

i=1

θiB
T ξi (ξi )TB)x + cT x +

N∑

i=1

θiv
2
i

s.t. vi = (ξi )TBx , i = 1, . . . ,N, (link constraint)

vi ≥ R + yi (αi − R), i = 1, . . . ,N,

eT y ≤ K

x ∈ X , α ≤ v ≤ β, y ∈ {0, 1}N .
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I Associating a multiplier λi to the link constraint vi = (ξi )TBx ,
we have the following Lagrangian relaxation problem of (P):

d(λ) = d1(λ) + d2(λ),

where

d1(λ) = min xT (Q −
N∑

i=1

θiB
T ξi (ξi )TB)x + (c −

N∑

i=1

λiB
T ξi )T x

s.t. x ∈ X

d2(λ) = min
N∑

i=1

θiv
2
i + λivi

s.t. vi ≥ R + yi (αi − R), yi ∈ {0, 1}, i = 1, . . . ,N,

eT y ≤ K , α ≤ v ≤ β.

I d1(λ) and d2(λ) are two easy subproblems!
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I The Lagrangian dual of (Pθ) is

(Dθ) max
λ

d(λ)

I The best θ can be found via the following program

(D) max
θ∈Θ

v(Dθ)

I We can show that
I (Dθ) can be reduced to an SOCP problem (for fixed θ ∈ Θ).
I (Dθ) is tighter than (or at least as tight as ) the continuous

relaxation of (MIQP0) for any fixed θ ∈ Θ and θ ≥ 0.
I (Dθ) is equivalent to the continuous relaxation of a new

reformulation of (P).
I (D) can be reduced to an SDP problem (best bound for all

admissible θ).
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From Linear Program to Semi-Definite Program

I Linear program and semidefinite program (SDP):

(LP) min 2x1 + x2 + x3

s.t. x1 + x2 + x3 = 1

(x1, x2, x3) ≥ 0.

(SDP) min 2x1 + x2 + x3

s.t. x1 + x2 + x3 = 1(
x1 x2

x2 x3

)
º 0.
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Figure: Set of 3× 3 positive semidefinite matrices with unit diagonal
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Penalty decomposition method
I Consider the reformulation of (P):

min xTQx + cT x

s.t. vi = (ξi )TBx , i = 1, . . . ,N, (link constraint)

vi ≥ R + yi (αi − R), i = 1, . . . ,N,

eT y ≤ K

x ∈ X , α ≤ v ≤ β, y ∈ {0, 1}N .

I The penalty decomposition method remove the link constraint
and add a quadratic penalty to enforce it:

(Pp) min xTQx + cT x + ρ

N∑

i=1

[
vi − (ξi )TBx

]2

s.t. vi ≥ R + yi (αi − R), i = 1, . . . ,N,

eT y ≤ K

x ∈ X , α ≤ v ≤ β, y ∈ {0, 1}N .
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I Alternating direction method can be used to solve the above
problem.

I Fox fixed xk ∈ X , (Pp) becomes

(Pk(v , y)) min (xk)TQxk + cT xk + ρk

N∑

i=1

[
vi − (ξi )TBxk

]2

s.t. vi ≥ R + yi (αi − R), i = 1, . . . ,N,

eT y ≤ K

α ≤ v ≤ β, y ∈ {0, 1}N .

I Let (vk , yk) be the optimal solution of (Pk(v, y)). Fixing
(v , y) = (vk , yk), (Pp) becomes

(Pk(x)) min xTQx + cT x + ρk

N∑

i=1

[
vk
i − (ξi )TBx

]2

s.t. x ∈ X .

Let xk+1 be the optimal solution.
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I Convergence property:

xk → x∗, k →∞,

where x∗ is a KKT point of (P).

I Computational results show that the suboptimal solution has
a relative gap within 5-10%.

I Large scale problems with n up to 1000 can be solved within
several minutes.
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Challenging problems

I Computational difficulty arises when the number of scenarios
(N) is large which leads to a large-scale (number of
constraints) MIQP.

I One of the open questions for the MIQP reformulation of
probabilistically constrained QP is how to reduce the number
of scenario constraints in MIQP using polyhedral properties of
the constraints: valid inequalities, cutting planes, scenarios
aggregation, scenario clustering? ...

I How to construct more efficient approximate or heuristic
methods to large-scale QP with probabilistic constraints?
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Factor-risk constrained MV model
I We assume that the random return Ri is driven by a group of

factors:

Ri = αi + βT
i f + εi ,

where f ∈ <m is the vector of random factors, αi is the
intercept representing the the alpha value of the asset and
βi ∈ <m is the factor loading sensitivities, and εi is a random
scalar representing the asset-specific return.

I The variance of the portfolio x is

σ2(x) =
m∑

i=1

m∑

j=1

βiβjσij +
n∑

i=1

x2
i σεi ,

where βj =
∑n

k=1 βkjxk , σij = Cov(fi , fj), σ2
εi

= Var(εi ).
I The systematic risk is

σ2
sys(x) =

m∑

i=1

m∑

j=1

βiβjσij =
m∑

j=1

β2
j σjj +

m∑

1≤i<j≤n

2βiβjσij .
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I The cross term can be decomposed as

2βiβjσij = ηij(2βiβjσij) + ηji (2βiβjσij).

where

ηij =
σjj

σii + σjj
, ηji =

σii

σii + σjj
.

I The risk associated with factor fj as

σ2
fj
(x) = β2

j σjj + 2
m∑

i=1,i 6=j

ηijβiβjσij .

I The relative risk associated with factor fj is then given by

σ2
fj
(x)

σ2
sys(x)

=
β2

j σjj + 2
∑m

i=1,i 6=j ηijβiβjσij∑m
i=1

∑m
k=1 βiβkσik

.
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I Factor-risk control:

σfj (x)

σsys(x)
≤ ψj , j ∈ J ⊆ {1, . . . ,m},

where ψj ∈ (0, 1) is a given control parameter, which is
equivalent to

β2
j σjj + 2

m∑

i=1,i 6=j

ηijβiβjσij − ψj

m∑

i=1

m∑

k=1

βiβkσik ≤ 0,

where βj =
∑n

k=1 βkjxk . This is a nonconvex quadratic
constraint.
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I MV model with factor-risk constraints:

(MVF) min f (x , β) =
m∑

i=1

m∑

j=1

βiβjσij +
n∑

i=1

x2
i σεi

s.t.
n∑

i=1

µixi ≥ ρ,

βj =
n∑

i=1

xiβij , j = 1, . . . ,m,

β2
j σjj + 2

m∑

i=1,i 6=j

ηijβiβjσij − ψj

m∑

i=1

m∑

k=1

βiβkσik ≤ 0, j ∈ J,

x ∈ X , β ∈ Rm.

I This is a quadratic program with nonconvex quadratic
constraints.
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Convex outer approximation to nonconvex quadratic
constraint

I Example: β2
1 − β2

2 ≤ 1.

I Convex outer approximation:

β2

1
− β2 − 3 = 0

β2

1
− β2

2
− 1 = 0

β1

β2

β2 = 2

β2 = −1

β2

1
− 2.5β2 = 0

β2

1
− 0.5β2 − 1.5 = 0

β1

β2

β2 = 0.5

β2 = −1

β2 = 2
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Conclusions and Research Perspective

I Many challenging modeling and algorithmic problems arising
from Financial optimization:

I Cardinality constraint (sparse solution, zero-norm problem)
I Probabilistic constraints (VaR constraints)
I Factor-risk constraints

I Discrete, combinatorial and nonconvex nature
I Solution methods:

I p-norm approximation, D.C. approximation
I Lagrangian decomposition, SDP and SOCP approximation
I Large-scale problem with scenario approximation
I Outer and inner approximation to nonconvex quadratic

constraints.

I Open questions: global solution (tight reformulations, cutting
planes, ...)? or local solution (quality guarantee, efficient
heuristics, ...)
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